Aspartate-tRNAAsn ligase

Part of the Springer Handbook of Enzymes book series (HDBKENZYMES, volume S7)


Escherichia Coli Pseudomonas Aeruginosa Chlamydia Trachomatis Mutant Enzyme tRNA Synthetase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Curnow, A.W.; Tumbula, D.L.; Pelaschier, J.T.; Min, B.; Sçll, D.: Glutamyl-tRNAGln amidotransferase in Deinococcus radiodurans may be confined to asparagine biosynthesis. Proc. Natl. Acad. Sci. USA, 95, 12838–12843 (1998)CrossRefPubMedGoogle Scholar
  2. [2]
    Schmitt, E.; Moulinier, L.; Fujiwara, S.; Imanaka, T.; Thierry, J.C.; Moras, D.: Crystal structure of aspartyl-tRNA synthetase from Pyrococcus kodakaraensis KOD: archaeon specificity and catalytic mechanism of adenylate formation. EMBO J., 17, 5227–5237 (1998)CrossRefPubMedGoogle Scholar
  3. [3]
    Becker, H.D.; Roy, H.; Moulinier, L.; Mazauric, M.H.; Keith, G.; Kern, D.: Thermus thermophilus contains an eubacterial and an archaebacterial aspartyl-tRNA synthetase. Biochemistry, 39, 3216–3230 (2000)CrossRefPubMedGoogle Scholar
  4. [4]
    Min, B.; Kitabatake, M.; Polycarpo, C.; Pelaschier, J.; Raczniak, G.; Ruan, B.; Kobayashi, H.; Namgoong, S.; Soll, D.: Protein synthesis in Escherichia coli with mischarged tRNA. J. Bacteriol., 185, 3524–3526 (2003)CrossRefPubMedGoogle Scholar
  5. [5]
    Akochy, P.M.; Bernard, D.; Roy, P.H.; Lapointe, J.: Direct glutaminyl-tRNA biosynthesis and indirect asparaginyl-tRNA biosynthesis in Pseudomonas aeruginosa PAO1. J. Bacteriol., 186, 767–776 (2004)CrossRefPubMedGoogle Scholar
  6. [6]
    Bernard, D.; Akochy, P.M.; Beaulieu, D.; Lapointe, J.; Roy, P.H.: Two residues in the anticodon recognition domain of the aspartyl-tRNA synthetase from Pseudomonas aeruginosa are individually implicated in the recognition of tRNAAsn. J. Bacteriol., 188, 269–274 (2006)CrossRefPubMedGoogle Scholar
  7. [7]
    Feng, L.; Yuan, J.; Toogood, H.; Tumbula-Hansen, D.; Soll, D.: Aspartyl-tRNA synthetase requires a conserved proline in the anticodon-binding loop for tRNA(Asn) recognition in vivo. J. Biol. Chem., 280, 20638–20641 (2005)CrossRefPubMedGoogle Scholar
  8. [8]
    Sato, Y.; Maeda, Y.; Shimizu, S.; Hossain, M.T.; Ubukata, S.; Suzuki, K.; Sekiguchi, T.; Takenaka, A.: Structure of the nondiscriminating aspartyltRNA synthetase from the crenarchaeon Sulfolobus tokodaii strain 7 reveals the recognition mechanism for two different tRNA anticodons. Acta Crystallogr. Sect. D, 63, 1042–1047 (2007)CrossRefGoogle Scholar
  9. [9]
    Suzuki, K.; Sato, Y.; Maeda, Y.; Shimizu, S.; Hossain, M.T.; Ubukata, S.; Sekiguchi, T.; Takenaka, A.: Crystallization and preliminary X-ray crystallographic study of a putative aspartyl-tRNA synthetase from the crenarchaeon Sulfolobus tokodaii strain 7. Acta Crystallogr. Sect. F, 63, 608–612 (2007)CrossRefGoogle Scholar
  10. [10]
    Chuawong, P.; Hendrickson, T.L.: The nondiscriminating aspartyl-tRNA synthetase from Helicobacter pylori: anticodon-binding domain mutations that impact tRNA specificity and heterologous toxicity. Biochemistry, 45, 8079–8087 (2006)CrossRefPubMedGoogle Scholar
  11. [11]
    Bernard, D.; Akochy, P.M.; Bernier, S.; Fisette, O.; Brousseau, O.C.; Chenevert, R.; Roy, P.H.; Lapointe, J.: Inhibition by l-aspartol adenylate of a nondiscriminating aspartyl-tRNA synthetase reveals differences between the interactions of its active site with tRNAAsp and tRNAAsn. J. Enzyme Inhib. Med. Chem., 22, 77–82 (2007)CrossRefPubMedGoogle Scholar
  12. [12]
    Cardoso, A.M.; Polycarpo, C.; Martins, O.B.; Soell, D.: A non-discriminating aspartyl-tRNA synthetase from Halobacterium salinarum. RNA Biol., 3, 110–114 (2006)PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Personalised recommendations