Advertisement

Squalene-hopene cyclase

Part of the Springer Handbook of Enzymes book series (HDBKENZYMES, volume S7)

Keywords

Zymomonas Mobilis Trimethylammonium Chloride Rhodopseudomonas Palustris Carbamic Acid Dodecyltrimethylammonium Bromide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Ceruti, M.; Balliano, G.; Rocco, F.; Milla, P.; Arpicco, S.; Cattel, L.; Viola, F.: Vinyl sulfide derivatives of truncated oxidosqualene as selective inhibitors of oxidosqualene and squalene-hopene cyclases. Lipids, 36, 629–636 (2001)CrossRefPubMedGoogle Scholar
  2. [2]
    Dang, T.; Prestwich, G.D.: Site-directed mutagenesis of squalene-hopene cyclase: altered substrate specificity and product distribution. Chem. Biol., 7, 643–649 (2000)CrossRefPubMedGoogle Scholar
  3. [3]
    Douka, E.; Koukkou, A.; Drainas, C.; Grosdemange-Billiard, C.; Rohmer, M.: Structural diversity of the triterpenic hydrocarbons from the bacterium Zymomonas mobilis: the signature of defective squalene cyclization by the squalene/hopene cyclase. FEMS Microbiol. Lett., 199, 247–251 (2001)CrossRefPubMedGoogle Scholar
  4. [4]
    Feil, C.; Suessmuth, R.; Jung, G.; Poralla, K.: Site-directed mutagenesis of putative active-site residues in squalene-hopene cyclase. Eur. J. Biochem., 242, 51–55 (1996)CrossRefPubMedGoogle Scholar
  5. [5]
    Full, C.: Bicyclic triterpenes as new main products of squalene-hopene cyclase by mutation at conserved tyrosine residues. FEBS Lett., 509, 361–364 (2001)CrossRefPubMedGoogle Scholar
  6. [6]
    Full, C.; Poralla, K.: Conserved Tyr residues determine functions of Alicyclobacillus acidocaldarius squalene-hopene cyclase. FEMS Microbiol. Lett., 183, 221–224 (2000)CrossRefPubMedGoogle Scholar
  7. [7]
    Hoshino, T.; Kouda, M.; Abe, T.; Sato, T.: Functional analysis of Phe605, a conserved aromatic amino acid in squalene-hopene cyclases. Chem. Commun., 2000, 1485–1486 (2000)CrossRefGoogle Scholar
  8. [8]
    Hoshino, T.; Sato, T.: Squalene-hopene cyclase: catalytic mechanism and substrate recognition. Chem. Commun., 2000, 291–301 (2002)CrossRefGoogle Scholar
  9. [9]
    Kleemann, G.; Kellner, R.; Poralla, K.: Purification and properties of the squalene-hopene cyclase from Rhodopseudomonas palustris, a purple non-sulfur bacterium producing hopanoids and tetrahymanol. Biochim. Biophys. Acta, 1210, 317–320 (1994)PubMedGoogle Scholar
  10. [10]
    Milla, P.; Lenhart, A.; Grosa, G.; Viola, F.; Weihofen, W.A.; Schulz, G.E.; Balliano, G.: Thiol-modifying inhibitors for understanding squalene cyclase function. Eur. J. Biochem., 269, 2108–2116 (2002)CrossRefPubMedGoogle Scholar
  11. [11]
    Ochs, D.; Tappe, C.H.; Gaertner, P.; Kellner, R.; Poralla, K.: Properties of purified squalene-hopene cyclase from Bacillus acidocaldarius. Eur. J. Biochem., 194, 75–80 (1990)CrossRefPubMedGoogle Scholar
  12. [12]
    Sato, T.; Hoshino, T.: Functional analysis of the DXDDTA motif in squalenehopene cyclase by site-directed mutagenesis experiments: initiation site of the polycyclization reaction and stabilization site of the carbocation intermediate of the initially cyclized A-ring. Biosci. Biotechnol. Biochem., 63, 2189–2198 (1999)CrossRefPubMedGoogle Scholar
  13. [13]
    Sato, T.; Hoshino, T.: Kinetic studies on the function of all the conserved tryptophans involved inside and outside the QWmotifs of squalene-hopene cyclase: stabilizing effect of the protein structure against thermal denaturation. Biosci. Biotechnol. Biochem., 63, 1171–1180 (1999)CrossRefPubMedGoogle Scholar
  14. [14]
    Sato, T.; Sasahara, S.; Yamakami, T.; Hoshino, T.: Functional analyses of Tyr420 and Leu607 of Alicyclobacillus acidocaldarius squalene-hopene cy clase. Neoachillapentaene, a novel triterpene with the 1,5,6-trimethylcyclohexene moiety produced through folding of the constrained boat structure. Biosci. Biotechnol. Biochem., 66, 1660–1670 (2002)CrossRefPubMedGoogle Scholar
  15. [15]
    Schmidt, A.; Bringer-Meyer, S.; Poralla, K.; Sahm, H.: Influence of ethanol on the activities of 3-hydroxy-3-methylglutaryl-coenzyme A-reductase and squalene-hopene-cyclase in Zymomonas mobilis. Appl. Microbiol. Biotechnol., 30, 170–175 (1989)CrossRefGoogle Scholar
  16. [16]
    Seckler, B.; Poralla, K.: Characterization and partial purification of squalene-hopene cyclase from Bacillus acidocaldarius. Biochim. Biophys. Acta, 881, 356–363 (1986)Google Scholar
  17. [17]
    Tippelt, A.; Jahnke, L.; Poralla, K.: Squalene-hopene cyclase from Methylococcus capsulatus (Bath): a bacterium producing hopanoids and steroids. Biochim. Biophys. Acta, 1391, 223–232 (1998)PubMedGoogle Scholar
  18. [18]
    Wendt, K.U.; Lenhart, A.; Schulz, G.E.: The structure of the membrane protein squalene-hopene cyclase at 2.0 Å resolution. J. Mol. Biol., 286, 175–187 (1999)CrossRefPubMedGoogle Scholar
  19. [19]
    Zheng, Y.F.; Abe, I.; Prestwich, G.D.: Inhibition kinetics and affinity labeling of bacterial squalene:hopene cyclase by thia-substituted analogs of 2,3-oxidosqualene. Biochemistry, 37, 5981–5987 (1998)CrossRefPubMedGoogle Scholar
  20. [20]
    Sato, T.; Kouda, M.; Hoshino, T.: Site-directed mutagenesis experiments on the putative deprotonation site of squalene-hopene cyclase from Alicyclobacillus acidocaldarius. Biosci. Biotechnol. Biochem., 68, 728–738 (2004)CrossRefPubMedGoogle Scholar
  21. [21]
    Reinert, D.J.; Balliano, G.; Schulz, G.E.: Conversion of squalene to the pentacarbocyclic hopene. Chem. Biol., 11, 121–126 (2004)PubMedGoogle Scholar
  22. [22]
    Cravotto, G.; Balliano, G.; Tagliapietra, S.; Palmisano, G.; Penoni, A.: Umbelliferone aminoalkyl derivatives, a new class of squalene-hopene cyclase inhibitors. Eur. J. Med. Chem., 39, 917–924 (2004)CrossRefPubMedGoogle Scholar
  23. [23]
    Lenhart, A.; Reinert, D.J.; Aebi, J.D.; Dehmlow, H.; Morand, O.H.; Schulz, G.E.: Binding structures and potencies of oxidosqualene cyclase inhibitors with the homologous squalene-hopene cyclase. J. Med. Chem., 46, 2083–2092 (2003)CrossRefPubMedGoogle Scholar
  24. [24]
    Rocco, F.; Bosso, S.O.; Viola, F.; Milla, P.; Roma, G.; Grossi, G.; Ceruti, M.: Conjugated methyl sulfide and phenyl sulfide derivatives of oxidosqualene as inhibitors of oxidosqualene and squalene-hopene cyclases. Lipids, 38, 201–207 (2003)CrossRefPubMedGoogle Scholar
  25. [25]
    Ceruti, M.; Balliano, G.; Rocco, F.; Lenhart, A.; Schulz, G.E.; Castelli, F.; Milla, P.: Synthesis and biological activity of new iodoacetamide derivatives on mutants of squalene-hopene cyclase. Lipids, 40, 729–735 (2005)CrossRefPubMedGoogle Scholar
  26. [26]
    Nakano, S.; Ohashi, S.; Hoshino, T.: Squalene-hopene cyclase: insight into the role of the methyl group on the squalene backbone upon the polycyclization cascade. Enzymatic cyclization products of squalene analogs lacking a 26-methyl group and possessing a methyl group at C7 or C11. Org. Biomol. Chem., 2, 2012–2022 (2004)CrossRefPubMedGoogle Scholar
  27. [27]
    Tanaka, H.; Noguchi, H.; Abe, I.: Enzymatic formation of indole-containing unnatural cyclic polyprenoids by bacterial squalene:hopene cyclase. Org. Lett., 7, 5873–5876 (2005)CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Personalised recommendations