Part of the Springer Handbook of Enzymes book series (HDBKENZYMES, volume S6)


Epidermal Growth Factor Receptor Caspase Family Methyl Ketone Actinobacillus Actinomycetemcomitans Viral Nucleocapsid Protein 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. [1]
    Strausberg R.L.; Feingold E.A.; Grouse L.H.; Derge J.G., et al.: Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences. Proc. Natl. Acad. Sci. USA, 99, 16899–16903 (2002)PubMedCrossRefGoogle Scholar
  2. [2]
    Nakajima, K.; Takahashi, A.; Yaoita, Y.: Structure, expression, and function of the Xenopus laevis caspase family. J. Biol. Chem., 275, 10484–10491 (2000)PubMedCrossRefGoogle Scholar
  3. [3]
    Garcia-Calvo, M.; Peterson, E.P.; Leiting, B.; Ruel, R.; Nicholson, D.W.; Thornberry, N.A.: Inhibition of human caspases by peptide-based and macromolecular inhibitors. J. Biol. Chem., 273, 32608–32613 (1998)PubMedCrossRefGoogle Scholar
  4. [4]
    Garcia-Calvo, M.; Peterson, E.P.; Rasper, D.M.; Vaillancourt, J.P.; Zamboni, R.; Nicholson, D.W.; Thornberry, N.A.: Purification and catalytic properties of human caspase family members. Cell Death Differ., 6, 362–369 (1999)PubMedCrossRefGoogle Scholar
  5. [5]
    Chang, H.Y.; Yang, X.: Proteases from cell suicide: functions and regulation of caspases. Microbiol. Mol. Biol. Rev., 64, 821–846 (2000)PubMedCrossRefGoogle Scholar
  6. [6]
    Thornberry, N.A.; Rano, T.A.; Peterson, E.P.; et al.: A combinatorial approach defines specificities of members of the caspase family and granzyme B. Functional relationships established for key mediators of apoptosis. J. Biol. Chem., 272, 17907–17911 (1997)PubMedCrossRefGoogle Scholar
  7. [7]
    Fernandes-Alnemri, T.; Armstrong, R.C.; Krebs, J.F.; Srinivasula, S.M.; Wang, L.; Bullrich, F.; Fritz, L.C.; Trapani, J.A.; Tomaselli, K.J.; Litwack, G.; Alnemri, E.S.: In vitro activation of CPP32 and Mch3 by Mch4, a novel human apoptotic cysteine protease containing two FADD-like domains. Proc. Natl. Acad. Sci. USA, 93, 7464–7469 (1996)PubMedCrossRefGoogle Scholar
  8. [8]
    van de Craen, M.; Vandenabeele, P.; Declercq, W.; van den Brande, I.; van Loo, G.; Molemans, F.; Schotte, P.; van Criekinge, W.; Beyaert, R.; Fiers, W.: Characterization of seven murine caspase family members. FEBS Lett., 403, 61–69 (1997)PubMedCrossRefGoogle Scholar
  9. [9]
    Eleouet, J.F.; Slee, E.A.; Saurini, F.; Castagne, N.; Poncet, D.; Garrido, C.; Solary, E.; Martin, S.J.: The viral nucleocapsid protein of transmissible gastroenteritis coronavirus (TGEV) is cleaved by caspase-6 and-7 during TGEV-induced apoptosis. J. Virol., 74, 3975–3983 (2000)PubMedCrossRefGoogle Scholar
  10. [10]
    Talanian, R.V.; Quinlan, C.; Trautz, S.; Hackett, M.C.; Mankovich, J.A.; Banach, D.; Ghayur, T.; Brady, K.D.; Wong, W.W.: Substrate specificities of caspase family proteases. J. Biol. Chem., 272, 9677–9682 (1997)PubMedCrossRefGoogle Scholar
  11. [11]
    Margolin, N.; Raybuck, S.A.; Wilson, K.P.; Chen, W.; Fox, T.; Gu, Y.; Livingston, D.J.: Substrate and inhibitor specificity of interleukin-1β-converting enzyme and related caspases. J. Biol. Chem., 272, 7223–7228 (1997)PubMedCrossRefGoogle Scholar
  12. [12]
    Bae, S.S.; Choi, J.H.; Oh, Y.S.; Perry, D.K.; Ryu, S.H.; Suh, P.G.: Proteolytic cleavage of epidermal growth factor receptor by caspases. FEBS Lett., 491, 16–20 (2001)PubMedCrossRefGoogle Scholar
  13. [13]
    Kisselev, A.F.; Garcia-Calvo, M.; Overkleeft, H.S.; Peterson, E.; Pennington, M.W.; Ploegh, H.L.; Thornberry, N.A.; Goldberg, A.L.: The caspase-like sites of proteasomes, their substrate specificity, new inhibitors and substrates, and allosteric interactions with the trypsin-like sites. J. Biol. Chem., 278, 35869–35877 (2003)PubMedCrossRefGoogle Scholar
  14. [14]
    Lippke, J.A.; Gu, Y.; Sarnecki, C.; Caron, P.R.; Su, M.S.-S.: Identification and characterization of CPP32/Mch2 homolog 1, a novel cysteine protease similar to CPP32. J. Biol. Chem., 271, 1825–1828 (1996)PubMedCrossRefGoogle Scholar
  15. [15]
    Fernandes-Alnemri, T.; Takahashi, A.; Armstrong, R.C.; Krebs, J.; Fritz, L.C.; Tomaselli, K.J.; Wang, L.; Yu, Z.; Croce, C.M.; Salveson, G.; Earnshaw, W.C.; Litwack, G.; Alnemri, E.S.: Mch3, a novel human apoptotic cysteine protease highly related to CPP32. Cancer Res., 55, 6045–6052 (1995)PubMedGoogle Scholar
  16. [16]
    Juan, T.S.-C.; McNiece, I.K.; Argento, J.M.; Jenkins, N.A.; Gilbert, D.J.; Copeland, N.G.; Fletcher, F.A.: Identification and mapping of Casp7, a cysteine protease resembling CPP32 β, interleukin-1 β converting enzyme, and CED-3. Genomics, 40, 86–93 (1997)PubMedCrossRefGoogle Scholar
  17. [17]
    Pai J.-T., Brown M.S., Goldstein J.L.: Purification and cDNA cloning of a second apoptosis-related cysteine protease that cleaves and activates sterol regulatory element binding proteins. Proc. Natl. Acad. Sci. USA, 93, 5437–5442 (1996)PubMedCrossRefGoogle Scholar
  18. [18]
    Machleidt, T.; Geller, P.; Schwandner, R.; Scherer, G.; Kronke, M.: Caspase 7-induced cleavage of kinectin in apoptotic cells. FEBS Lett., 436, 51–54 (1998)PubMedCrossRefGoogle Scholar
  19. [19]
    Ethell, D.W.; Bossy-Wetzel, E.; Bredesen, D.E.: Caspase 7 can cleave tumor necrosis factor receptor-I (p60) at a non-consensus motif, in vitro. Biochim. Biophys. Acta, 1541, 231–238 (2001)PubMedCrossRefGoogle Scholar
  20. [20]
    Riedl, S.J.; Fuentes-Prior, P.; Renatus, M.; Kairies, N.; Krapp, S.; Huber, R.; Salvesen, G.S.; Bode, W.: Structural basis for the activation of human procaspase-7. Proc. Natl. Acad. Sci. USA, 98, 14790–14795 (2001)PubMedCrossRefGoogle Scholar
  21. [21]
    Yaoita, Y.: Inhibition of nuclear transport of caspase-7 by its prodomain. Biochem. Biophys. Res. Commun., 291, 79–84 (2002)PubMedCrossRefGoogle Scholar
  22. [22]
    Behrensdorf, H.A.; van de Craen, M.; Knies, U.E.; Vandenabeele, P.; Clauss, M.: The endothelial monocyte-activating polypeptide II (EMAP II) is a substrate for caspase-7. FEBS Lett., 466, 143–147 (2000)PubMedCrossRefGoogle Scholar
  23. [23]
    Denault, J.B.; Salvesen, G.S.: Human caspase-7 activity and regulation by its N-terminal peptide. J. Biol. Chem., 278, 34042–34050 (2003)PubMedCrossRefGoogle Scholar
  24. [24]
    Duan, H.; Chinnaiyan, A.M.; Hudson, P.L.; Wing, J.P.; He, W.-W.; Dixit, V.M.: ICE-LAP-3, a novel mammalian homologue at the Caenorhabditis elegans cell death protein Ced-3 is activated during Fas-and tumor necrosis factor-induced apoptosis. J. Biol. Chem., 271, 1621–1625 (1996)PubMedCrossRefGoogle Scholar
  25. [25]
    Chiu, C.C.; Lin, C.H.; Fang, K.: Etoposide (VP-16) sensitizes p53-deficient human non-small cell lung cancer cells to caspase-7-mediated apoptosis. Apoptosis, 10, 643–650 (2005)PubMedCrossRefGoogle Scholar
  26. [26]
    Yacobi, K.; Wojtowicz, A.; Tsafriri, A.; Gross, A.: Gonadotropins enhance caspase-3 and-7 activity and apoptosis in the theca-interstitial cells of rat preovulatory follicles in culture. Endocrinology, 145, 1943–1951 (2004)PubMedCrossRefGoogle Scholar
  27. [27]
    Ohara, M.; Hayashi, T.; Kusunoki, Y.; Miyauchi, M.; Takata, T.; Sugai, M.: Caspase-2 and caspase-7 are involved in cytolethal distending toxin-induced apoptosis in Jurkat and MOLT-4 T-cell lines. Infect. Immun., 72, 871–879 (2004)PubMedCrossRefGoogle Scholar
  28. [28]
    Sironi, J.J.; Ouchi, T.: STAT1-induced apoptosis is mediated by caspases 2, 3, and 7. J. Biol. Chem., 279, 4066–4074 (2004)PubMedCrossRefGoogle Scholar
  29. [29]
    Clarke, C.A.; Bennett, L.N.; Clarke, P.R.: Cleavage of claspin by caspase-7 during apoptosis inhibits the Chk1 pathway. J. Biol. Chem., 280, 35337–35345 (2005)PubMedCrossRefGoogle Scholar
  30. [30]
    Twiddy, D.; Cohen, G.M.; Macfarlane, M.; Cain, K.: Caspase-7 is directly activated by the approximately 700-kDa apoptosome complex and is released as a stable XIAP-caspase-7 approximately 200-kDa complex. J. Biol. Chem., 281, 3876–3888 (2006)PubMedCrossRefGoogle Scholar
  31. [31]
    Fang, B.; Boross, P.I.; Tozser, J.; Weber, I.T.: Structural and kinetic analysis of caspase-3 reveals role for S5 binding site in substrate recognition. J. Mol. Biol., 360, 654–666 (2006)PubMedCrossRefGoogle Scholar
  32. [32]
    Houde, C.; Banks, K.G.; Coulombe, N.; Rasper, D.; Grimm, E.; Roy, S.; Simpson, E.M.; Nicholson, D.W.: Caspase-7 expanded function and intrinsic expression level underlies strain-specific brain phenotype of caspase-3-null mice. J. Neurosci., 24, 9977–9984 (2004)PubMedCrossRefGoogle Scholar
  33. [33]
    Hayashi, N.; Shirakura, H.; Uehara, T.; Nomura, Y.: Relationship between SUMO-1 modification of caspase-7 and its nuclear localization in human neuronal cells. Neurosci. Lett., 397, 5–9 (2006)PubMedCrossRefGoogle Scholar
  34. [34]
    Goode, D.R.; Sharma, A.K.; Hergenrother, P.J.: Using peptidic inhibitors to systematically probe the S1 site of caspase-3 and caspase-7. Org. Lett., 7, 3529–3532 (2005)PubMedCrossRefGoogle Scholar
  35. [35]
    Chen, D.; Texada, D.E.; Duggan, C.; Deng, Y.; Redens, T.B.; Langford, M.P.: Caspase-3 and-7 mediate apoptosis of human Chang’s conjunctival cells induced by enterovirus 70. Virology, 347, 307–322 (2006)PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Personalised recommendations