Advertisement

Pathologie pp 625-650 | Cite as

Hodgkin-Lymphome

  • Sylvia Hartmann
  • Martin-Leo Hansmann
Chapter

Zusammenfassung

Die Gruppe der Hodgkin Lymphome hat eine lange und für das heutige Verständnis der malignen Lymphome paradigmatische Geschichte. Die in der neuen WHO Klassifikation bestätigten Entitäten und Varianten des klassischen Hodgkin Lymphoms und des nodulären Lymphozyten-prädominanten Hodgkin Lymphoms sind morphologisch, immunhistochemisch, molekulargenetisch und klinisch definiert und von morphologisch ähnlichen Befunden großzelliger und auch EBV-assoziierter Non-Hodgkin Lymphome abzugrenzen. Dieses wichtige und komplizierte Kapitel ist hier umfassend und unter Berücksichtigung neuer pathogenetischer und funktioneller Befunde dargestellt und erlaubt so für Pathologen und Kliniker eine moderne und relevante Diagnostik.

Literatur

  1. 1.
    Achten R, Verhoef G, Vanuytsel L, De Wolf-Peeters C (2002) Histiocyte-rich, T-cell-rich B-cell lymphoma: a distinct diffuse large B-cell lymphoma subtype showing characteristic morphologic and immunophenotypic features. Histopathology 40:31–45PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Agostinelli C, Sabattini E, Gjorret JO, Righi S, Rossi M, Mancini M et al (2010) Characterization of a new monoclonal antibody against PAX5/BASP in 1525 paraffin-embedded human and animal tissue samples. Appl Immunohistochem Mol Morphol 18:561–572PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Al-Mansour M, Connors JM, Gascoyne RD, Skinnider B, Savage KJ (2010) Transformation to aggressive lymphoma in nodular lymphocyte-predominant Hodgkin’s lymphoma. J Clin Oncol 28:793–799PubMedCrossRefGoogle Scholar
  4. 4.
    Alavaikko MJ, Blanco G, Aine R, Lehtinen T, Fellbaum C, Taskinen PJ et al (1994) Follicular dendritic cells have prognostic relevance in Hodgkin’s disease. Am J Clin Pathol 101:761–767PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Anagnostopoulos I, Hansmann ML, Franssila K, Harris M, Harris NL, Jaffe ES et al (2000) European Task Force on Lymphoma project on lymphocyte predominance Hodgkin disease: histologic and immunohistologic analysis of submitted cases reveals 2 types of Hodgkin disease with a nodular growth pattern and abundant lymphocytes. Blood 96:1889–1899PubMedPubMedCentralGoogle Scholar
  6. 6.
    Ansell SM, Lesokhin AM, Borrello I, Halwani A, Scott EC, Gutierrez M et al (2015) PD-1 blockade with nivolumab in relapsed or refractory Hodgkin’s lymphoma. N Engl J Med 372:311–319PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Audouin J, Diebold J, Pallesen G Frequent expression of Epstein-Barr virus latent membrane protein-1 in tumour cells of Hodgkin’s disease in HIV-positive patients. J Pathol 167:381–384PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Biasoli I, Stamatoullas A, Meignin V, Delmer A, Reman O, Morschhauser F et al (2010) Nodular, lymphocyte-predominant Hodgkin lymphoma: a long-term study and analysis of transformation to diffuse large B-cell lymphoma in a cohort of 164 patients from the Adult Lymphoma Study Group. Cancer 116:631–639PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Braeuninger A, Küppers R, Strickler JG, Wacker HH, Rajewsky K, Hansmann ML (1997) Hodgkin and Reed-Sternberg cells in lymphocyte predominant Hodgkin disease represent clonal populations of germinal center-derived tumor B cells. Proc Natl Acad Sci Usa 94:9337–9342PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Brauninger A, Spieker T, Willenbrock K, Gaulard P, Wacker HH, Rajewsky K et al (2001) Survival and clonal expansion of mutating „forbidden“ (immunoglobulin receptor-deficient) Epstein-Barr virus-infected B cells in angioimmunoblastic Tcell lymphoma. J Exp Med 194:927–940PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Brune V, Tiacci E, Pfeil I, Doring C, Eckerle S, van Noesel CJ et al (2008) Origin and pathogenesis of nodular lymphocyte-predominant Hodgkin lymphoma as revealed by global gene expression analysis. J Exp Med 205:2251–2268PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Bryant AJ, Newman JH (2013) Alcohol intolerance associated with Hodgkin lymphoma. CMAJ 185:E353PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Cabannes E, Khan G, Aillet F, Jarrett RF, Hay RT (1999) Mutations in the IkBa gene in Hodgkin’s disease suggest a tumour suppressor role for IkBa. Oncogene 18:3063–30670PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Döring C, Hansmann ML, Agostinelli C, Piccaluga PP, Facchetti F, Pileri S et al (2014) A novel immunohistochemical classifier to distinguish Hodgkin lymphoma from ALK anaplastic large cell lymphoma. Mod Pathol 27:1345–1354PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Dutton A, Reynolds GM, Dawson CW, Young LS, Murray PG (2005) Constitutive activation of phosphatidyl-inositide 3 kinase contributes to the survival of Hodgkin’s lymphoma cells through a mechanism involving Akt kinase and mTOR. J Pathol 205:498–506PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Eberle FC, Song JY, Xi L, Raffeld M, Harris NL, Wilson WH et al (2012) Nodal involvement by cutaneous CD30-positive T-cell lymphoma mimicking classical Hodgkin lymphoma. Am J Surg Pathol 36:716–725PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Eichenauer DA, Engert A (2014) Antibodies and antibody-drug conjugates in the treatment of Hodgkin lymphoma. Eur J Haematol 93:1–8PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Fan Z, Natkunam Y, Bair E, Tibshirani R, Warnke RA (2003) Characterization of variant patterns of nodular lymphocyte predominant hodgkin lymphoma with immunohistologic and clinical correlation. Am J Surg Pathol 27:1346–1356PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Federico M, Rudiger T, Bellei M, Nathwani BN, Luminari S, Coiffier B et al (2013) Clinicopathologic characteristics of angioimmunoblastic T-cell lymphoma: analysis of the international peripheral T-cell lymphoma project. J Clin Oncol 31:240–246PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Ferry JA, Zukerberg LR, Harris NL (1992) Florid progressive transformation of germinal centers. A syndrome affecting young men, without early progression to nodular lymphocyte predominance Hodgkin’s disease. Am J Surg Pathol 16:252–258PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Hansmann ML, Fellbaum C, Hui PK, Moubayed P (1990) Progressive transformation of germinal centers with and without association to Hodgkin’s disease. Am J Clin Pathol 93:219–226PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Hansmann ML, Stein H, Dallenbach F, Fellbaum C (1991) Diffuse lymphocyte-predominant Hodgkin’s disease (diffuse paragranuloma). A variant of the B-cell-derived nodular type. Am J Pathol 138:29–36PubMedPubMedCentralGoogle Scholar
  23. 23.
    Hansmann ML, Stein H, Fellbaum C, Hui PK, Parwaresch MR, Lennert K (1989) Nodular paragranuloma can transform into high-grade malignant lymphoma of B type. Hum Pathol 120:1169–1175CrossRefGoogle Scholar
  24. 24.
    Hartmann S, Doring C, Jakobus C, Rengstl B, Newrzela S, Tousseyn T et al (2013) Nodular lymphocyte predominant hodgkin lymphoma and T cell/histiocyte rich large B cell lymphoma – endpoints of a spectrum of one disease? PLoS ONE 8:e78812PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Hartmann S, Eichenauer DA, Plutschow A, Mottok A, Bob R, Koch K et al (2013) The prognostic impact of variant histology in nodular lymphocyte-predominant Hodgkin lymphoma: a report from the German Hodgkin Study Group (GHSG). Blood 122:4246–4252PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Hartmann S, Jakobus C, Rengstl B, Doring C, Newrzela S, Brodt HR et al (2013) Spindle-shaped CD163+ rosetting macrophages replace CD4+ T-cells in HIV-related classical Hodgkin lymphoma. Mod Pathol 26:648–657PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Hartmann S, Martin-Subero JI, Gesk S, Husken J, Giefing M, Nagel I et al (2008) Detection of genomic imbalances in microdissected Hodgkin and Reed-Sternberg cells of classical Hodgkin’s lymphoma by array-based comparative genomic hybridization. Haematologica 93:1318–1326PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Hartmann S, Martin-Subero JI, Gesk S, Hüsken J, Giefing M, Nagel I et al (2008) Detection of genomic imbalances in microdissected Hodgkin and Reed-Sternberg cells of classical Hodgkin’s lymphoma by array-based comparative genomic hybridization. Haematologica 93:1318–1326PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Hartmann S, Schuhmacher B, Rausch T, Fuller L, Doring C, Weniger M et al (2016) Highly recurrent mutations of SGK1, DUSP2 and JUNB in nodular lymphocyte predominant Hodgkin lymphoma. Leukemia 30:844–853PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Hartmann S, Winkelmann R, Metcalf RA, Treetipsatit J, Warnke RA, Natkunam Y et al (2015) Immunoarchitectural patterns of progressive transformation of germinal centers with and without nodular lymphocyte-predominant Hodgkin lymphoma. Hum Pathol 46:1655–1661PubMedCrossRefGoogle Scholar
  31. 31.
    Hartmann SD (2015) C, Vucic E, Chan FC, Ennishi D, Tousseyn T, de Wolf-Peeters C, Perner S, Wlodarska I, Steidl C. Gascoyne RD, Hansmann ML (Array comparative genomic hybridization reveals similarities between nodular lymphocyte predominant Hodgkin lymphoma and T cell/histiocyte rich large B cell lymphoma. Br J Haematol 169: 415–422)Google Scholar
  32. 32.
    Hodgkin T (1832) On some morbid appearances of the absorbent glands and spleen. Med Chir Trans 17:68–114PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Hu S, Young KH, Konoplev SN, Medeiros LJ (2012) Follicular T-cell lymphoma: a member of an emerging family of follicular helper T-cell derived T-cell lymphomas. Hum Pathol 43:1789–1798PubMedCrossRefGoogle Scholar
  34. 34.
    Huppmann AR, Nicolae A, Slack GW, Pittaluga S, Davies-Hill T, Ferry JA et al. (2014) EBV may be expressed in the LP cells of nodular lymphocyte-predominant Hodgkin lymphoma (NLPHL) in both children and adults. Am J Surg Pathol 38: 316–324PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Jackson H Jr, Parker F Jr (1946) Hodgkin’s disease; clinical diagnosis. N Engl J Med 234:37–41PubMedCrossRefGoogle Scholar
  36. 36.
    Jackson H Jr, Parker F Jr (1946) Hodgkin’s disease; treatment and prognosis. N Engl J Med 234:103–110PubMedCrossRefGoogle Scholar
  37. 37.
    Joos S, Küpper M, Ohl S, von Bonin F, Mechtersheimer G, Bentz M et al (2000) Genomic imbalances including amplification of the tyrosine kinase gene JAK2 in CD30+ Hodgkin cells. Cancer Res 60:549–552PubMedGoogle Scholar
  38. 38.
    Joos S, Menz CK, Wrobel G, Siebert R, Gesk S, Ohl S et al (2002) Classical Hodgkin lymphoma is characterized by recurrent copy number gains of the short arm of chromosome 2. Blood 99:1381–1387PubMedCrossRefGoogle Scholar
  39. 39.
    Jundt F, Anagnostopoulos I, Förster R, Mathas S, Stein H, Dörken B (2001) Activated Notch 1 signaling promotes tumor cell proliferation and survival in Hodgkin and anaplastic large cell lymphoma. Blood 99:3398–3403CrossRefGoogle Scholar
  40. 40.
    Jungnickel B, Staratschek-Jox A, Bräuninger A, Spieker T, Wolf J, Diehl V et al (2000) Clonal deleterious mutations in the IkBa gene in the malignant cells in Hodgkin’s lymphoma. J Exp Med 191:395–402PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Kanzler H, Hansmann ML, Kapp U, Wolf J, Diehl V, Rajewsky K et al (1996) Sternberg cells of a Hodgkin’s lymphoma patient. Molecular single cell analysis demonstrates the derivation of a peripheral blood-derived cell line (L1236) from the Hodgkin, Bd. 87. Reed, , S 3429–3436Google Scholar
  42. 42.
    Kanzler H, Küppers R, Hansmann ML, Rajewsky K (1996) Hodgkin and Reed-Sternberg cells in Hodgkin’s disease represent the outgrowth of a dominant tumor clone derived from (crippled) germinal center B cells. J Exp Med 184:1495–1505PubMedCrossRefGoogle Scholar
  43. 43.
    Kanzler H, Küppers R, Hansmann ML, Rajewsky K (1996) Hodgkin and Reed-Sternberg cells in Hodgkin’s disease represent the outgrowth of a dominant tumor clone derived from (crippled) germinal center B cells. J Exp Med 184:1495–1505PubMedCrossRefGoogle Scholar
  44. 44.
    Kanzler H, Kuppers R, Helmes S, Wacker HH, Chott A, Hansmann ML et al (2000) Hodgkin and Reed-Sternberg-like cells in B-cell chronic lymphocytic leukemia represent the outgrowth of single germinal-center B-cell-derived clones: potential precursors of Hodgkin and Reed-Sternberg cells in Hodgkin’s disease. Blood 95:1023–1031PubMedPubMedCentralGoogle Scholar
  45. 45.
    Kreher S, Bouhlel MA, Cauchy P, Lamprecht B, Li S, Grau M et al (2014) Mapping of transcription factor motifs in active chromatin identifies IRF5 as key regulator in classical Hodgkin lymphoma. Proc Natl Acad Sci U S A 111:E4513–4522PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Küppers R (2003) B cells under influence: transformation of B cells by Epstein-Barr virus. Nat Rev Immunol 3:801–812PubMedCrossRefGoogle Scholar
  47. 47.
    Küppers R, Dührsen U, Hansmann ML (2014) Pathogenesis, diagnosis, and treatment of composite lymphomas. Lancet Oncol 15:e435–446PubMedCrossRefGoogle Scholar
  48. 48.
    Küppers R, Engert A, Hansmann ML (2012) Hodgkin lymphoma. J Clin Invest 122:3439–3447PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Küppers R, Rajewsky K, Zhao M, Simons G, Laumann R, Fischer R et al (1994) Hodgkin disease: Hodgkin and Reed-Sternberg cells picked from histological sections show clonal immunoglobulin gene rearrangements and appear to be derived from B cells at various stages of development. Proc Natl Acad Sci Usa 91:10962–10966PubMedCrossRefGoogle Scholar
  50. 50.
    Küppers R, Zhao M, Hansmann ML, Rajewsky K (1993) Tracing B cell development in human germinal centres by molecular analysis of single cells picked from histological sections. Embo J 12:4955–4967PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Lamprecht B, Walter K, Kreher S, Kumar R, Hummel M, Lenze D et al (2010) Derepression of an endogenous long terminal repeat activates the CSF1R proto-oncogene in human lymphoma. Nat Med 16:571–579PubMedCrossRefGoogle Scholar
  52. 52.
    Liu Y, Razak AFR, Terpstra M, Chan FC, Saber A, Nijland M et al (2014) The mutational landscape of Hodgkin lymphoma cell lines determined by whole-exome sequencing. Leukemia 28:2248–2251PubMedCrossRefPubMedCentralGoogle Scholar
  53. 53.
    Lukes RJ, Butler JJ (1966) The pathology and nomenclature of Hodgkin’s disease. Cancer Res 26:1063–1083PubMedPubMedCentralGoogle Scholar
  54. 54.
    Ma Y, Visser L, Roelofsen H, de Vries M, Diepstra A, van Imhoff G et al (2008) Proteomics analysis of Hodgkin lymphoma: identification of new players involved in the cross-talk between HRS cells and infiltrating lymphocytes. Blood 111:2339–2346PubMedCrossRefPubMedCentralGoogle Scholar
  55. 55.
    Mader A, Bruderlein S, Wegener S, Melzner I, Popov S, Muller-Hermelink HK et al (2007) U-HO1, a new cell line derived from a primary refractory classical Hodgkin lymphoma. Cytogenet Genome Res 119:204–210PubMedCrossRefPubMedCentralGoogle Scholar
  56. 56.
    Mao Z, Quintanilla-Martinez L, Raffeld M, Richter M, Krugmann J, Burek C et al (2007) IgVH mutational status and clonality analysis of Richter’s transformation: diffuse large B-cell lymphoma and Hodgkin lymphoma in association with B-cell chronic lymphocytic leukemia (B-CLL) represent 2 different pathways of disease evolution. Am J Surg Pathol 31:1605–1614PubMedCrossRefPubMedCentralGoogle Scholar
  57. 57.
    Martin-Subero JI, Klapper W, Sotnikova A, Callet-Bauchu E, Harder L, Bastard C et al (2006) Chromosomal breakpoints affecting immunoglobulin loci are recurrent in Hodgkin and Reed-Sternberg cells of classical Hodgkin lymphoma. Cancer Res 66:10332–10338PubMedCrossRefPubMedCentralGoogle Scholar
  58. 58.
    Mathas S, Hinz M, Anagnostopoulos I, Krappmann D, Lietz A, Jundt F et al (2002) Aberrantly expressed c-Jun and JunB are a hallmark of Hodgkin lymphoma cells, stimulate proliferation and synergize with NF-kappa B. Embo J 21:4104–4113PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Moroch J, Copie-Bergman C, de Leval L, Plonquet A, Martin-Garcia N, Delfau-Larue MH et al (2012) Follicular peripheral T-cell lymphoma expands the spectrum of classical Hodgkin lymphoma mimics. Am J Surg Pathol 36:1636–1646PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Mottok A, Renne C, Willenbrock K, Hansmann ML, Brauninger A (2007) Somatic hypermutation of SOCS1 in lymphocyte-predominant Hodgkin lymphoma is accompanied by high JAK2 expression and activation of STAT6. Blood 110:3387–3390PubMedCrossRefGoogle Scholar
  61. 61.
    Nagel S, Burek C, Venturini L, Scherr M, Quentmeier H, Meyer C et al (2007) Comprehensive analysis of homeobox genes in Hodgkin lymphoma cell lines identifies dysregulated expression of HOXB9 mediated via ERK5 signaling and BMI1. Blood 109:3015–3023PubMedGoogle Scholar
  62. 62.
    Nam-Cha SH, Montes-Moreno S, Salcedo MT, Sanjuan J, Garcia JF, Piris MA (2009) Lymphocyte-rich classical Hodgkin’s lymphoma: distinctive tumor and microenvironment markers. Mod Pathol 22:1006–1015PubMedCrossRefGoogle Scholar
  63. 63.
    Nam-Cha SH, Roncador G, Sanchez-Verde L, Montes-Moreno S, Acevedo A, Dominguez-Franjo P et al (2008) PD-1, a follicular T-cell marker useful for recognizing nodular lymphocyte-predominant Hodgkin lymphoma. Am J Surg Pathol 32:1252–1257PubMedCrossRefGoogle Scholar
  64. 64.
    Nathwani B, Vornanen M, Winkelmann R, Kansal R, Döring C, Hartmann S et al (2013) Intranodular clusters of activated cells with T follicular helper (TFH) phenotype in nodular lymphocyte predominant Hodgkin lymphoma: a pilot study of 32 cases from Finland. Hum Pathol 44:1737–1746PubMedCrossRefGoogle Scholar
  65. 65.
    Nicolae A, Pittaluga S, Venkataraman G, Vijnovich-Baron A, Xi L, Raffeld M et al (2013) Peripheral T-cell lymphomas of follicular T-helper cell derivation with Hodgkin/Reed-Sternberg cells of B-cell lineage: both EBV-positive and EBV-negative variants exist. Am J Surg Pathol 37:816–826PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Prakash S, Fountaine T, Raffeld M, Jaffe ES, Pittaluga S (2006) IgD positive L&H cells identify a unique subset of nodular lymphocyte predominant Hodgkin lymphoma. Am J Surg Pathol 30:585–592PubMedCrossRefGoogle Scholar
  67. 67.
    Quintanilla-Martinez L, Fend F, Moguel LR, Spilove L, Beaty MW, Kingma DW et al (1999) Peripheral T-cell lymphoma with Reed-Sternberg-like cells of B-cell phenotype and genotype associated with Epstein-Barr virus infection. Am J Surg Pathol 23:1233–1240PubMedCrossRefGoogle Scholar
  68. 68.
    Reed D (1902) On the pathological changes in Hodgkin’s disease with special reference to its relation to tuberculosis. John Hopkins Hosp Rep 10:133–193Google Scholar
  69. 69.
    Reichel J, Chadburn A, Rubinstein PG, Giulino-Roth L, Tam W, Liu Y et al (2015) Flow sorting and exome sequencing reveal the oncogenome of primary Hodgkin and Reed-Sternberg cells. Blood 125:1061–1072PubMedCrossRefGoogle Scholar
  70. 70.
    Rengstl B, Newrzela S, Heinrich T, Weiser C, Thalheimer FB, Schmid F et al (2013) Re-fusion of small mononucleated Hodgkin cells leads to giant multinucleated Reed-Sternberg cells in Hodgkin lymphoma. Proc Natl Acad Sci U S A 110:20729–20734PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Renné C, Martin-Subero JI, Hansmann ML, Siebert R (2005) Molecular cytogenetic analyses of immunoglobulin loci in nodular lymphocyte predominant Hodgkin’s lymphoma reveal a recurrent IGH-BCL6 juxtaposition. J Mol Diagn 7:352–356PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Renné C, Willenbrock K, Küppers R, Hansmann ML, Bräuninger A (2005) Autocrine- and paracrine-activated receptor tyrosine kinases in classic Hodgkin lymphoma. Blood 105:4051–4059PubMedCrossRefGoogle Scholar
  73. 73.
    Roca B, Simon E (1998) Hodgkin’s disease presenting with hypercalcaemia of unknown origin. Ir Med J 91:102PubMedGoogle Scholar
  74. 74.
    Rudiger T, Ichinohasama R, Ott MM, Muller-Deubert S, Miura I, Ott G et al (2000) Peripheral T-cell lymphoma with distinct perifollicular growth pattern: a distinct subtype of T-cell lymphoma? Am J Surg Pathol 24:117–122PubMedCrossRefGoogle Scholar
  75. 75.
    Schaadt M, Diehl V, Stein H, Fonatsch C, Kirchner HH (1980) Two neoplastic cell lines with unique features derived from Hodgkin’s disease. Int J Cancer 26:723–731PubMedCrossRefGoogle Scholar
  76. 76.
    Schmid C, Sargent C, Isaacson PG (1991) L and H cells of nodular lymphocyte predominant Hodgkin’s disease show immunoglobulin light-chain restriction. Am J Pathol 139:1281–1289PubMedPubMedCentralGoogle Scholar
  77. 77.
    Schmidt A, Schmitz R, Giefing M, Martin-Subero JI, Gesk S, Vater I et al (2010) Rare occurrence of biallelic CYLD gene mutations in classical Hodgkin lymphoma. Genes Chromosomes Cancer 49:803–809PubMedGoogle Scholar
  78. 78.
    Schmitz R, Hansmann ML, Bohle V, Martin-Subero JI, Hartmann S, Mechtersheimer G et al. (2009) TNFAIP3 (A20) is a tumor suppressor gene in Hodgkin lymphoma and primary mediastinal B cell lymphoma. J Exp Med 206: 981–989PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Schmitz R, Stanelle J, Hansmann ML, Kuppers R (2009) Pathogenesis of classical and lymphocyte-predominant Hodgkin lymphoma. Annu Rev Pathol 4:151–174PubMedCrossRefGoogle Scholar
  80. 80.
    Schneider M, Schneider S, Zuhlke-Jenisch R, Klapper W, Sundstrom C, Hartmann S et al (2015) Alterations of the CD58 gene in classical Hodgkin lymphoma. Genes Chromosomes Cancer 54:638–645PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Schwering I, Bräuninger A, Klein U, Jungnickel B, Tinguely M, Diehl V et al (2003) Loss of the B-lineage-specific gene expression program in Hodgkin and Reed-Sternberg cells of Hodgkin lymphoma. Blood 101:1505–1512PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Slack GW, Ferry JA, Hasserjian RP, Sohani AR, Longtine JA, Harris NL et al (2009) Lymphocyte depleted Hodgkin lymphoma: an evaluation with immunophenotyping and genetic analysis. Leuk Lymphoma 50:937–943PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Stanelle J, Doring C, Hansmann ML, Kuppers R (2010) Mechanisms of aberrant GATA3 expression in classical Hodgkin lymphoma and its consequences for the cytokine profile of Hodgkin and Reed/Sternberg cells. Blood 116:4202–4211PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Steidl C, Connors JM, Gascoyne RD (2011) Molecular pathogenesis of Hodgkin’s lymphoma: increasing evidence of the importance of the microenvironment. J Clin Oncol 29:1812–1826PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Steidl C, Diepstra A, Lee T, Chan FC, Farinha P, Tan K et al (2012) Gene expression profiling of microdissected Hodgkin Reed Sternberg cells correlates with treatment outcome in classical Hodgkin lymphoma. Blood 120:3530–3540PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Steidl C, Lee T, Shah SP, Farinha P, Han G, Nayar T et al (2010) Tumor-associated macrophages and survival in classic Hodgkin’s lymphoma. N Engl J Med 362:875–885PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Steidl C, Shah SP, Woolcock BW, Rui L, Kawahara M, Farinha P et al (2011) MHC class II transactivator CIITA is a recurrent gene fusion partner in lymphoid cancers. Nature 471:377–381PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Stein H, Mason DY, Gerdes J, O’Connor N, Wainscoat J, Pallesen G et al (1985) The expression of the Hodgkin’s disease associated antigen Ki-1 in reactive and neoplastic lymphoid tissue: evidence that Reed-Sternberg cells and histiocytic malignancies are derived from activated lymphoid cells. Blood 66:848–858PubMedPubMedCentralGoogle Scholar
  89. 89.
    Sternberg C (1898) Über eine eigenartige unter dem Bilde der Pseudoleukämie verlaufende Tuberkolose des lymphatischen Apparates. Z Heilkd 19:21–90Google Scholar
  90. 90.
    Swerdlow SH, Campo E, Pileri SA, Harris NL, Stein H, Siebert R et al (2016) The 2016 revision of the World Health Organization classification of lymphoid neoplasms. Blood 127:2375–2390PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Swerdlow SH, International Agency for Research on Cancer, World Health Organization (2008) WHO classification of tumours of haematopoietic and lymphoid tissues. 4th edn. International Agency for Research on Cancer: Lyon, France, pp 317–334Google Scholar
  92. 92.
    Tedoldi S, Mottok A, Ying J, Paterson JC, Cui Y, Facchetti F et al (2007) Selective loss of B-cell phenotype in lymphocyte predominant Hodgkin lymphoma. J Pathol 213:429–440PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Thirumala S, Esposito M, Fuchs A (2000) An unusual variant of composite lymphoma: a short case report and review of the literature. Arch Pathol Lab Med 124:1376–1378PubMedPubMedCentralGoogle Scholar
  94. 94.
    Vandenberghe P, Wlodarska I, Tousseyn T, Dehaspe L, Dierickx D, Verheecke M et al (2015) Non-invasive detection of genomic imbalances in Hodgkin/Reed-Sternberg cells in early and advanced stage Hodgkin’s lymphoma by sequencing of circulating cell-free DNA: a technical proof-of-principle study. Lancet Haematol 2:e55–65PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    von Wasielewski R, Seth S, Franklin J, Fischer R, Hubner K, Hansmann ML et al (2000) Tissue eosinophilia correlates strongly with poor prognosis in nodular sclerosing Hodgkin’s disease, allowing for known prognostic factors. Blood 95:1207–1213Google Scholar
  96. 96.
    Weniger MA, Melzner I, Menz CK, Wegener S, Bucur AJ, Dorsch K et al (2006) Mutations of the tumor suppressor gene SOCS-1 in classical Hodgkin lymphoma are frequent and associated with nuclear phospho-STAT5 accumulation. Oncogene 25:2679–2684PubMedCrossRefGoogle Scholar
  97. 97.
    Willenbrock K, Ichinohasama R, Kadin ME, Miura I, Terui T, Meguro K et al (2002) T-cell variant of classical Hodgkin’s lymphoma with nodal and cutaneous manifestations demonstrated by single-cell polymerase chain reaction. Lab Invest 82:1103–1109PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Wlodarska I, Nooyen P, Maes B, Martin-Subero JI, Siebert R, Pauwels P et al (2003) Frequent occurrence of BCL6 rearrangements in nodular lymphocyte predominance Hodgkin lymphoma but not in classical Hodgkin lymphoma. Blood 101:706–710PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Wood KM, Roff M, Hay RT (1998) Defective IkBa in Hodgkin cell lines with constitutively active NF-kB. Oncogene 16:2131–2139PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Wurster KD, Hummel F, Richter J, Giefing M, Hartmann S, Hansmann ML et al (2016) Inactivation of the putative ubiquitin-E3 ligase PDLIM2 in classical Hodgkin and anaplastic large cell lymphoma. Leukemia 31:602–613PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Xie L, Ushmorov A, Leithauser F, Guan H, Steidl C, Farbinger J et al (2012) FOXO1 is a tumor suppressor in classical Hodgkin lymphoma. Blood 119:3503–3511PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Zheng B, Fiumara P, Li YV, Georgakis G, Snell V, Younes M et al (2003) MEK/ERK pathway is aberrantly active in Hodgkin disease: a signaling pathway shared by CD30, CD40, and RANK that regulates cell proliferation and survival. Blood 102:1019–1027PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature 2019

Authors and Affiliations

  1. 1.Dr. Senckenbergisches Institut für PathologieKlinikum der Johann Wolfgang Goethe-UniversitätFrankfurtDeutschland

Personalised recommendations