Advertisement

Sepsis pp 29-43 | Cite as

The Genetics of Sepsis: The Promise, the Progress and the Pitfalls

  • Grant W. Waterer
Chapter
  • 990 Downloads

Physicians are used to taking a family history of cardiovascular disease because of the known significant hereditary risk; yet the familial risk of dying from infection is even greater than that for atherosclerotic disease (Sorensen et al. 1988). There is certainly no doubt that genetic differences impact on the risk of developing or dying from infection. Obvious but rare examples include selective immunoglobulin deficiencies, complement deficiencies, and neutrophil function abnormalities. Genetic factors may also be protective, such as with sickle cell trait and malaria or mutations conferring resistance to human immunodeficiency virus infection.

Much more subtle differences in immune responses are now being described, usually as the result of one or more single nucleotide polymorphisms (SNP) in a gene. Rather than causing the failure of production of a protein or the production of a nonfunctional protein, SNPs are usually associated with changes in the rate of transcription, producing a much less severe phenotype than the classical examples of genetic defects mentioned above. It is now being appreciated that for many complex diseases, such as sepsis, the ultimate phenotype is the result of the interaction of genetic differences across many loci, not the dominant effect of a few key mutations.

As seen in Fig. 3.1, since the mid 1990s, an increasing body of literature has focused on the role that gene polymorphisms in key inflammatory genes play in sepsis. Indeed, with advances in knowledge of the human genome, greater understanding of the inflammatory response, and the development of high throughput genotyping technologies, so many genetic associations have been described that discussion of each one is well beyond the scope of this chapter. I will however summarize those findings that have been reported by multiple groups, as well as give an overview of the major groups of genes that have been implicated in genetic predisposition to sepsis and its adverse outcomes.

Keywords

Tumor Necrosis Factor Septic Shock Severe Sepsis Acute Respiratory Distress Syndrome Single Nucleotide Polymorphism 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Arcaroli, J., E. Silva, J. Maloney, Q. He, D. Svetkauskaite, J. Murphy, and E. Abraham. 2006. Variant IRAK-1 haplotype is associated with increased nuclear factor-kappaB activation and worse outcomes in sepsis. Am J Respir Crit Care Med 173:1335–41.PubMedCrossRefGoogle Scholar
  2. Arnalich, F., D. Lopez-Maderuelo, R. Codoceo, J. Lopez, L. M. Solis-Garrido, C. Capiscol, C. Fernandez-Capitan, R. Madero, and C. Montiel. 2002. Interleukin-1 receptor antagonist gene polymorphism and mortality in patients with severe sepsis. Clin Exp Immunol 127:331–6.PubMedCrossRefGoogle Scholar
  3. Azim, K., R. McManus, K. Brophy, A. Ryan, D. Kelleher, and J. V. Reynolds. 2007. Genetic polymorphisms and the risk of infection following esophagectomy. Positive association with TNF-alpha gene -308 genotype. Ann Surg 246:122–8.PubMedCrossRefGoogle Scholar
  4. Baier, R., J. Loggins, and K. Yanamandra. 2006. IL-10, IL-6 and CD14 polymorphisms and sepsis outcome in ventilated very low birth weight infants. BMC Med 12:10–12.CrossRefGoogle Scholar
  5. Bajwa, E., C. Yu, M. Gong, B. Thompson, and D. Christiani. 2007. Pre-B-cell colony-enhancing factor gene polymorphisms and risk of acute respiratory distress syndrome. Crit Care Med 35:1290–5.PubMedCrossRefGoogle Scholar
  6. Balding, J., C. M. Healy, W. J. Livingstone, B. White, L. Mynett-Johnson, M. Cafferkey, and O. P. Smith. 2003. Genomic polymorphic profiles in an Irish population with meningococcaemia: is it possible to predict severity and outcome of disease? Genes Immun 4:533–40.PubMedCrossRefGoogle Scholar
  7. Barber, R., L. Chang, B. D. Arnoldo, G. Purdue, J. Hunt, J. Horton, and C. Aragaki. 2006. Innate immunity SNPs are associated with risk for severe sepsis after burn injury. Clin Med Res 4:250–5.PubMedCrossRefGoogle Scholar
  8. Barber, R. C., and G. E. O’Keefe. 2003. Characterization of a single nucleotide polymorphism in the lipopolysaccharide binding protein and its association with sepsis. Am J Respir Crit Care Med 167:1316–20.PubMedCrossRefGoogle Scholar
  9. Bayley, J. P., T. H. Ottenhoff, and C. L. Verweij. 2004. Is there a future for TNF promoter polymorphisms? Genes Immun 5:315–29.PubMedCrossRefGoogle Scholar
  10. Bernard, G. R., J. L. Vincent, P. F. Laterre, S. P. LaRosa, J. F. Dhainaut, A. Lopez-Rodriguez, J. S. Steingrub, G. E. Garber, J. D. Helterbrand, E. W. Ely, and C. J. Fisher, Jr. 2001. Efficacy and safety of recombinant human activated protein C for severe sepsis. N Engl J Med 344:699–709.PubMedCrossRefGoogle Scholar
  11. Beutler, B. 2002. Toll-like receptors: how they work and what they do. Curr Opin Hematol 9:2–10.PubMedCrossRefGoogle Scholar
  12. Beutler, B., and G. E. Grau. 1993. Tumor necrosis factor in the pathogenesis of infectious diseases. Crit Care Med 21(10 Suppl):S423–35.PubMedGoogle Scholar
  13. Binder, A., G. Endler, M. Muller, C. Mannhalter, and W. Zenz. 2007. 4G4G genotype of the plasminogen activator inhibitor-1 promoter polymorphism associates with disseminated intravascular coagulation in children with systemic meningococcemia. J Thromb Haemost 5:2049–54.PubMedCrossRefGoogle Scholar
  14. Bochud, P. Y., and T. Calandra. 2003. Pathogenesis of sepsis: new concepts and implications for future treatment. BMJ 326(7383):262–6.PubMedCrossRefGoogle Scholar
  15. Calvano, J. E., J. Y. Um, D. M. Agnese, S. J. Hahm, A. Kumar, S. M. Coyle, S. E. Calvano, and S. F. Lowry. 2003. Influence of the TNF-alpha and TNF-beta polymorphisms upon infectious risk and outcome in surgical intensive care patients. Surg Infect (Larchmt) 4:163–9.CrossRefGoogle Scholar
  16. Cipriano, C., C. Caruso, D. Lio, R. Giacconi, M. Malavolta, E. Muti, N. Gasparini, C. Franceschi, and E. Mocchegiani. 2005. The -308G/A polymorphism of TNF-alpha influences immunological parameters in old subjects affected by infectious diseases. Int J Immunogenet 32:13–18.PubMedCrossRefGoogle Scholar
  17. Clark, M., and S. Baudouin. 2006. A systematic review of the quality of genetic association studies in human sepsis. Intensive Care Med 32:1679–80.CrossRefGoogle Scholar
  18. Eklund, C., R. Huttunen, J. Syrjänen, J. Laine, R. Vuento, and M. Hurme. 2006. Polymorphism of the C-reactive protein gene is associated with mortality in bacteraemia. Scand J Infect Dis 38(11–12):1069–73.PubMedCrossRefGoogle Scholar
  19. Fang, X. M., S. Schroder, A. Hoeft, and F. Stuber. 1999. Comparison of two polymorphisms of the interleukin-1 gene family: interleukin-1 receptor antagonist polymorphism contributes to susceptibility to severe sepsis. Crit Care Med 27:1330–4.PubMedCrossRefGoogle Scholar
  20. Flores, C., N. Maca-Meyer, L. Pérez-Méndez, R. Sangüesa, E. Espinosa, A. Muriel, J. Blanco, J. Villar, G. group, and G.- S. group. 2006. A CXCL2 tandem repeat promoter polymorphism is associated with susceptibility to severe sepsis in the Spanish population. Genes Immun 7:141–9.PubMedCrossRefGoogle Scholar
  21. Gallagher, P. M., G. Lowe, T. Fitzgerald, A. Bella, C. M. Greene, N. G. McElvaney, and S. J. O’Neill. 2003. Association of IL-10 polymorphism with severity of illness in community acquired pneumonia. Thorax 58:154–6.PubMedCrossRefGoogle Scholar
  22. Gao, L., C. Flores, S. Fan-Ma, E. Miller, J. Moitra, L. Moreno, R. Wadgaonkar, B. Simon, R. Brower, J. Sevransky, R. Tuder, J. Maloney, M. Moss, C. Shanholtz, C. Yates, G. Meduri, S. Ye, K. Barnes, and J. Garcia. 2007. Macrophage migration inhibitory factor in acute lung injury: expression, biomarker, and associations. Transl Res 150:18–29.PubMedCrossRefGoogle Scholar
  23. Garcia-Segarra, G., G. Espinosa, D. Tassies, J. Oriola, J. Aibar, A. Bove, P. Castro, J. C. Reverter, and J. M. Nicolas. 2007. Increased mortality in septic shock with the 4G/4G genotype of plasminogen activator inhibitor 1 in patients of white descent. Intensive Care Med 33:1354–62.PubMedCrossRefGoogle Scholar
  24. Garred, P., J. Strøm, L. Quist, E. Taaning, and H. Madsen. 2003. Association of mannose-binding lectin polymorphisms with sepsis and fatal outcome, in patients with systemic inflammatory response syndrome. J Infect Dis 188:1394–1403.PubMedCrossRefGoogle Scholar
  25. Geishofer, G., A. Binder, M. Muller, B. Zohrer, B. Resch, W. Muller, J. Faber, A. Finn, G. Endler, C. Mannhalter, W. Zenz, and C. E. M. G. S. Group. 2005. 4G/5G promoter polymorphism in the plasminogen-activator-inhibitor-1 gene in children with systemic meningococcaemia. Eur J Pediatr 164:486–90.PubMedCrossRefGoogle Scholar
  26. Gibot, S., A. Cariou, L. Drouet, M. Rossignol, and L. Ripoll. 2002. Association between a genomic polymorphism within the CD14 locus and septic shock susceptibility and mortality rate. Crit Care Med 30:969–73.PubMedCrossRefGoogle Scholar
  27. Gong, M. N., Z. Wei, L. L. Xu, D. P. Miller, B. T. Thompson, and D. C. Christiani. 2004. Polymorphism in the surfactant protein-B gene, gender, and the risk of direct pulmonary injury and ARDS. Chest 125:203–11.PubMedCrossRefGoogle Scholar
  28. Gong, M. N., W. Zhou, P. L. Williams, B. T. Thompson, L. Pothier, P. Boyce, and D. C. Christiani. 2005. -308GA and TNFB polymorphisms in acute respiratory distress syndrome. Eur Respir J 26:382–9.PubMedCrossRefGoogle Scholar
  29. Gong, M. N., B. T. Thompson, P. L. Williams, W. Zhou, M. Z. Wang, L. Pothier, and D. C. Christiani. 2006. Interleukin-10 polymorphism in position -1082 and acute respiratory distress syndrome. Eur Respir J 27:674–81.PubMedCrossRefGoogle Scholar
  30. Gong, M. N., W. Zhou, P. L. Williams, B. T. Thompson, L. Pothier, and D. C. Christiani. 2007. Polymorphisms in the mannose binding lectin-2 gene and acute respiratory distress syndrome. Crit Care Med 35:48–56.PubMedCrossRefGoogle Scholar
  31. Gordon, A. C., A. L. Lagan, E. Aganna, L. Cheung, C. J. Peters, M. F. McDermott, J. L. Millo, K. I. Welsh, P. Holloway, G. A. Hitman, R. D. Piper, C. S. Garrard, and C. J. Hinds. 2004. TNF and TNFR polymorphisms in severe sepsis and septic shock: a prospective multicentre study. Genes Immun 5:631–40.PubMedCrossRefGoogle Scholar
  32. Gordon, A., U. Waheed, T. Hansen, G. Hitman, C. Garrard, M. Turner, N. Klein, S. Brett, and C. Hinds. 2006. Mannose-binding lectin polymorphisms in severe sepsis: relationship to levels, incidence, and outcome. Shock 25:88–93.PubMedCrossRefGoogle Scholar
  33. Gu, W., Y. Shan, J. Zhou, D. Jiang, L. Zhang, D. Du, Z. Wang, and J. Jiang. 2007. Functional significance of gene polymorphisms in the promoter of myeloid differentiation-2. Ann Surg 246:151–8.PubMedCrossRefGoogle Scholar
  34. Haralambous, E., M. L. Hibberd, P. W. Hermans, N. Ninis, S. Nadel, and M. Levin. 2003. Role of functional plasminogen-activator-inhibitor-1 4G/5G promoter polymorphism in susceptibility, severity, and outcome of meningococcal disease in Caucasian children. Crit Care Med 31:2788–93.PubMedCrossRefGoogle Scholar
  35. Hawn, T. R., A. Verbon, K. D. Lettinga, L. P. Zhao, S. S. Li, R. J. Laws, S. J. Skerrett, B. Beutler, L. Schroeder, A. Nachman, A. Ozinsky, K. D. Smith, and A. Aderem. 2003. A common dominant TLR5 stop codon polymorphism abolishes flagellin signaling and is associated with susceptibility to legionnaires’ disease. J Exp Med 198:1563–72.PubMedCrossRefGoogle Scholar
  36. Hedberg, C. L., K. Adcock, J. Martin, J. Loggins, T. E. Kruger, and R. J. Baier. 2004. Tumor necrosis factor alpha – 308 polymorphism associated with increased sepsis mortality in ventilated very low birth weight infants. Pediatr Infect Dis J 23:424–8.PubMedCrossRefGoogle Scholar
  37. Heesen, M., B. Bloemeke, U. Schade, U. Obertacke, and M. Majetschak. 2002. The -260 C→T promoter polymorphism of the lipopolysaccharide receptor CD14 and severe sepsis in trauma patients. Intensive Care Med 28:1161–3.PubMedCrossRefGoogle Scholar
  38. Hermans, P. W., M. L. Hibberd, R. Booy, O. Daramola, J. A. Hazelzet, R. de Groot, and M. Levin. 1999. 4G/5G promoter polymorphism in the plasminogen-activator-inhibitor-1 gene and outcome of meningococcal disease. Meningococcal Research Group. Lancet 354(9178):556–60.PubMedCrossRefGoogle Scholar
  39. Hubacek, J. A., F. Stuber, D. Frohlich, M. Book, S. Wetegrove, M. Ritter, G. Rothe, and G. Schmitz. 2001. Gene variants of the bactericidal/permeability increasing protein and lipopolysaccharide binding protein in sepsis patients: gender-specific genetic predisposition to sepsis. Crit Care Med 29:557–61.PubMedCrossRefGoogle Scholar
  40. Kronborg, G., N. Weis, H. Madsen, S. Pedersen, C. Wejse, H. Nielsen, et al. 2002. Variant mannose-binding lectin alleles are not associated with susceptibility to or outcome of invasive pneumococcal infection in randomly included patients. J Infect Dis 185:1517–20.PubMedCrossRefGoogle Scholar
  41. Lenasi, T., B. M. Peterlin, and P. Dovc. 2006. Distal regulation of alternative splicing by splicing enhancer in equine beta-casein intron 1. RNA 12:498–507.PubMedCrossRefGoogle Scholar
  42. Lorenz, E., J. Mira, K. Frees, and D. Schwartz. 2002. Relevance of mutations in the TLR4 receptor in patients with gram-negative septic shock. Arch Intern Med 162:1028–32.PubMedCrossRefGoogle Scholar
  43. Lowe, P. R., H. F. Galley, A. Abdel-Fattah, and N. R. Webster. 2003. Influence of interleukin-10 polymorphisms on interleukin-10 expression and survival in critically ill patients. Crit Care Med 31:34–8.PubMedCrossRefGoogle Scholar
  44. Ma, P., D. Chen, J. Pan, and B. Du. 2002. Genomic polymorphism within interleukin-1 family cytokines influences the outcome of septic patients. Zhonghua Yi Xue Za Zhi 82:1237–41.PubMedGoogle Scholar
  45. Majetschak, M., S. Flohe, U. Obertacke, J. Schroder, K. Staubach, D. Nast-Kolb, F. U. Schade, and F. Stuber. 1999. Relation of a TNF gene polymorphism to severe sepsis in trauma patients. Ann Surg 230:207–14.PubMedCrossRefGoogle Scholar
  46. Manocha, S., J. Russell, A. Sutherland, A. Wattanathum, and K. Walley. 2007. Fibrinogen-beta gene haplotype is associated with mortality in sepsis. J Infect 54:572–7.PubMedCrossRefGoogle Scholar
  47. Meloni, R., V. Albanese, P. Ravassard, F. Treilhou, and J. Mallet. 1998. A tetranucleotide polymorphic microsatellite, located in the first intron of the tyrosine hydroxylase gene, acts as a transcription regulatory element in vitro. Hum Mol Genet 7:423–8.PubMedCrossRefGoogle Scholar
  48. Mira, J. P., A. Cariou, F. Grall, C. Delclaux, M. R. Losser, F. Heshmati, C. Cheval, M. Monchi, J. L. Teboul, F. Riche, G. Leleu, L. Arbibe, A. Mignon, M. Delpech, and J. F. Dhainaut. 1999. Association of TNF2, a TNF-alpha promoter polymorphism, with septic shock susceptibility and mortality: a multicenter study. JAMA 282:561–8.PubMedCrossRefGoogle Scholar
  49. Moretti, E. W., R. W. Morris, M. Podgoreanu, D. A. Schwinn, M. F. Newman, E. Bennett, V. G. Moulin, U. U. Mba, and D. T. Laskowitz. 2005. APOE polymorphism is associated with risk of severe sepsis in surgical patients. Crit Care Med 33:2521–6.PubMedCrossRefGoogle Scholar
  50. Nakada, T. A., H. Hirasawa, S. Oda, H. Shiga, K. I. Matsuda, M. Nakamura, E. Watanabe, R. Abe, M. Hatano, and T. Tokuhisa. 2005. Influence of toll-like receptor 4, CD14, tumor necrosis factor, and interleukine-10 gene polymorphisms on clinical outcome in Japanese critically ill patients. J Surg Res 129:322–8.PubMedCrossRefGoogle Scholar
  51. Nuntayanuwat, S., T. Dharakul, W. Chaowagul, and S. Songsivilai. 1999. Polymorphism in the promoter region of tumor necrosis factor-alpha gene is associated with severe meliodosis. Hum Immunol 60:979–83.PubMedCrossRefGoogle Scholar
  52. O’Keefe, G. E., D. L. Hybki, and R. S. Munford. 2002. The G→A single nucleotide polymorphism at the -308 position in the tumor necrosis factor-alpha promoter increases the risk for severe sepsis after trauma. J Trauma 52:817–25; discussion 825–6.PubMedCrossRefGoogle Scholar
  53. Peters, D. L., R. C. Barber, E. M. Flood, H. R. Garner, and G. E. O’Keefe. 2003. Methodologic quality and genotyping reproducibility in studies of tumor necrosis factor -308 ****G→A single nucleotide polymorphism and bacterial sepsis: implications for studies of complex traits. Crit Care Med 31:1691–6.PubMedCrossRefGoogle Scholar
  54. Pociot, F., J. Molvig, L. Wogensen, H. Worsaae, and J. Nerup. 1992. A TaqI polymorphism in the human interleukin-1 beta (IL-1 beta) gene correlates with IL-1 beta secretion in vitro. Eur J Clin Invest 22:396–402.PubMedCrossRefGoogle Scholar
  55. Quasney, M. W., G. W. Waterer, M. K. Dahmer, G. K. Kron, Q. Zhang, L. A. Kessler, and R. G. Wunderink. 2004. Association between surfactant protein B+1580 polymorphism and the risk of respiratory failure in adults with community-acquired pneumonia. Crit Care Med 32:1115–19.PubMedCrossRefGoogle Scholar
  56. Rauchschwalbe, S. K., T. Maseizik, U. Mittelkotter, B. Schluter, C. Patzig, A. Thiede, and H. B. Reith. 2004. Effect of the LT-alpha (+250 G/A) polymorphism on markers of inflammation and clinical outcome in critically ill patients. J Trauma 56:815–22.PubMedCrossRefGoogle Scholar
  57. Read, R. C., N. J. Camp, F. S. di Giovine, R. Borrow, E. B. Kaczmarski, A. G. Chaudhary, A. J. Fox, and G. W. Duff. 2000. An interleukin-1 genotype is associated with fatal outcome of meningococcal disease. J Infect Dis 182:1557–60.PubMedCrossRefGoogle Scholar
  58. Rohrer, J., and M. E. Conley. 1998. Transcriptional regulatory elements within the first intron of Bruton’s tyrosine kinase. Blood 91:214–21.PubMedGoogle Scholar
  59. Roy, S., K. Knox, S. Segal, D. Griffiths, C. Moore, K. Welsh, et al. 2002. MBL genotype and risk of invasive pneumococcal disease: a case–control study. Lancet 359(9317):1569–73.PubMedCrossRefGoogle Scholar
  60. Schaaf, B. M., F. Boehmke, H. Esnaashari, U. Seitzer, H. Kothe, M. Maass, P. Zabel, and K. Dalhoff. 2003. Pneumococcal septic shock is associated with the interleukin-10–1082 gene promoter polymorphism. Am J Respir Crit Care Med 168:476–80.PubMedCrossRefGoogle Scholar
  61. Schluter, B., C. Raufhake, M. Erren, H. Schotte, F. Kipp, S. Rust, H. Van Aken, G. Assmann, and E. Berendes. 2002. Effect of the interleukin-6 promoter polymorphism (-174 G/C) on the incidence and outcome of sepsis. Crit Care Med 30:32–7.PubMedCrossRefGoogle Scholar
  62. Schroder, O., K. M. Schulte, P. Ostermann, H. D. Roher, A. Ekkernkamp, and R. A. Laun. 2003. Heat shock protein 70 genotypes HSPA1B and HSPA1L influence cytokine concentrations and interfere with outcome after major injury. Crit Care Med 31:73–9.PubMedCrossRefGoogle Scholar
  63. Schroder, O., R. A. Laun, B. Held, A. Ekkernkamp, and K. M. Schulte. 2004. Association of interleukin-10 promoter polymorphism with the incidence of multiple organ dysfunction following major trauma: results of a prospective pilot study. Shock 21:306–10.PubMedCrossRefGoogle Scholar
  64. Schueller, A. C., A. Heep, E. Kattner, M. Kroll, M. Wisbauer, J. Sander, P. Bartmann, and F. Stuber. 2006. Prevalence of two tumor necrosis factor gene polymorphisms in premature infants with early onset sepsis. Biol Neonate 90:229–32.PubMedCrossRefGoogle Scholar
  65. Shu, Q., X. Fang, Q. Chen, and F. Stuber. 2003. IL-10 polymorphism is associated with increased incidence of severe sepsis. Chin Med J (Engl) 116:1756–9.Google Scholar
  66. Skinner, N. A., C. M. MacIsaac, J. A. Hamilton, and K. Visvanathan. 2005. Regulation of toll-like receptor (TLR) 2 and TLR4 on CD14dimCD16+ monocytes in response to sepsis-related antigens. Clin Exp Immunol 141:270–8.PubMedCrossRefGoogle Scholar
  67. Sorensen, T. I., G. G. Nielsen, P. K. Andersen, and T. W. Teasdale. 1988. Genetic and environmental influences on premature death in adult adoptees. N Engl J Med 318:727–32.PubMedGoogle Scholar
  68. Stanilova, S. A., L. D. Miteva, Z. T. Karakolev, and C. S. Stefanov. 2006. Interleukin-10–1082 promoter polymorphism in association with cytokine production and sepsis susceptibility. Intensive Care Med 32:260–6.PubMedCrossRefGoogle Scholar
  69. Stassen, N. A., C. M. Breit, L. A. Norfleet, and H. C. Polk, Jr. 2003. IL-18 promoter polymorphisms correlate with the development of post-injury sepsis. Surgery 134:351–6.PubMedCrossRefGoogle Scholar
  70. Stuber, F., I. A. Udalova, M. Book, L. N. Drutskaya, D. V. Kuprash, R. L. Turetskaya, F. U. Schade, and S. A. Nedospasov. 1995. -308 tumor necrosis factor (TNF) polymorphism is not associated with survival in severe sepsis and is unrelated to lipopolysaccharide inducibility of the human TNF promoter. J Inflamm 46:42–50.PubMedGoogle Scholar
  71. Stuber, F., M. Petersen, F. Bokelmann, and U. Schade. 1996. A genomic polymorphism within the tumor necrosis factor locus influences plasma tumor necrosis factor-alpha concentrations and outcome of patients with severe sepsis. Crit Care Med 24:381–4.PubMedCrossRefGoogle Scholar
  72. Sutherland, A. M., and J. A. Russell. 2005. Issues with polymorphism analysis in sepsis. Clin Infect Dis 41(7 Suppl):S396–402.PubMedCrossRefGoogle Scholar
  73. Sutherland, A. M., K. R. Walley, and J. A. Russell. 2005a. Polymorphisms in CD14, mannose-binding lectin, and toll-like receptor-2 are associated with increased prevalence of infection in critically ill adults. Crit Care Med 33:638–44.PubMedCrossRefGoogle Scholar
  74. Sutherland, A. M., K. R. Walley, S. Manocha, and J. A. Russell. 2005b. The association of interleukin 6 haplotype clades with mortality in critically ill adults. Arch Intern Med 165:75–82.PubMedCrossRefGoogle Scholar
  75. Temple, S. E., K. Y. Cheong, C. M. Almeida, P. Price, and G. W. Waterer. 2003a. Polymorphisms in lymphotoxin alpha and CD14 genes influence TNF alpha production induced by Gram-positive and Gram-negative bacteria. Genes Immun 4:283–8.PubMedCrossRefGoogle Scholar
  76. Temple, S. E., E. Lim, K. Y. Cheong, C. A. Almeida, P. Price, K. G. Ardlie, and G. W. Waterer. 2003b. Alleles carried at positions -819 and -592 of the IL10 promoter affect transcription following stimulation of peripheral blood cells with Streptococcus pneumoniae. Immunogenetics 55:629–32.PubMedCrossRefGoogle Scholar
  77. Temple, S. E., K. Y. Cheong, K. G. Ardlie, D. Sayer, and G. W. Waterer. 2004. The septic shock associated HSPA1B1267 polymorphism influences production of HSPA1A and HSPA1B. Intensive Care Med 30:1761–7.PubMedCrossRefGoogle Scholar
  78. Turner, D. M., D. M. Williams, D. Sankaran, M. Lazarus, P. J. Sinnott, and I. V. Hutchinson. 1997. An investigation of polymorphism in the interleukin-10 gene promoter. Eur J Immunogenet 24:1–8.PubMedGoogle Scholar
  79. van der Pol, W. L., T. W. Huizinga, G. Vidarsson, M. W. van der Linden, M. D. Jansen, V. Keijsers, F. G. de Straat, N. A. Westerdaal, J. G. de Winkel, and R. G. Westendorp. 2001. Relevance of Fcgamma receptor and interleukin-10 polymorphisms for meningococcal disease. J Infect Dis 184:1548–55.PubMedCrossRefGoogle Scholar
  80. Walley, K., and J. Russell. 2007. Protein C -1641 AA is associated with decreased survival and more organ dysfunction in severe sepsis. Crit Care Med 35:12–17.PubMedCrossRefGoogle Scholar
  81. Watanabe, E., H. Hirasawa, S. Oda, K. Matsuda, M. Hatano, and T. Tokuhisa. 2005. Extremely high interleukin-6 blood levels and outcome in the critically ill are associated with tumor necrosis factor- and interleukin-1-related gene polymorphisms. Crit Care Med 33:89–97; discussion 242–3.PubMedCrossRefGoogle Scholar
  82. Waterer, G. W. 2007. Polymorphism studies in critical illness – we have to raise the bar. Crit Care Med 35:1424–5.PubMedCrossRefGoogle Scholar
  83. Waterer, G. W., M. W. Quasney, R. M. Cantor, and R. G. Wunderink. 2001. Septic shock and respiratory failure in community-acquired pneumonia have different TNF polymorphism associations. Am J Respir Crit Care Med 163:1599–604.PubMedGoogle Scholar
  84. Waterer, G. W., L. ElBahlawan, M. W. Quasney, Q. Zhang, L. A. Kessler, and R. G. Wunderink. 2003. Heat shock protein 70–2+1267 AA homozygotes have an increased risk of septic shock in adults with community-acquired pneumonia. Crit Care Med 31:1367–72.PubMedCrossRefGoogle Scholar
  85. Wattanathum, A., S. Manocha, H. Groshaus, J. A. Russell, and K. R. Walley. 2005. Interleukin-10 haplotype associated with increased mortality in critically ill patients with sepsis from pneumonia but not in patients with extrapulmonary sepsis. Chest 128:1690–8.PubMedCrossRefGoogle Scholar
  86. Webb, K. E., J. F. Martin, J. Cotton, J. D. Erusalimsky, and S. E. Humphries. 2003. The 4830C > A polymorphism within intron 5 affects the pattern of alternative splicing occurring within exon 6 of the thrombopoietin gene. Exp Hematol 31:488–94.PubMedCrossRefGoogle Scholar
  87. Weiler, H., B. Kerlin, and M. C. Lytle. 2004. Factor V Leiden polymorphism modifies sepsis outcome: evidence from animal studies. Crit Care Med 32(5 Suppl):S233–8.PubMedCrossRefGoogle Scholar
  88. Westendorp, R. G., J. A. Langermans, T. W. Huizinga, A. H. Elouali, C. L. Verweij, D. I. Boomsma, and J. P. Vandenbroucke. 1997. Genetic influence on cytokine production and fatal meningococcal disease. Lancet 349(9046):170–3.PubMedCrossRefGoogle Scholar
  89. Yan, S. B., and D. R. Nelson. 2004. Effect of factor V Leiden polymorphism in severe sepsis and on treatment with recombinant human activated protein C. Crit Care Med 32(5 Suppl):S239–46.PubMedCrossRefGoogle Scholar
  90. Ye, S., F. R. Green, P. Y. Scarabin, V. Nicaud, L. Bara, S. J. Dawson, S. E. Humphries, A. Evans, G. Luc, J. P. Cambou, et al. 1995. The 4G/5G genetic polymorphism in the promoter of the plasminogen activator inhibitor-1 (PAI-1) gene is associated with differences in plasma PAI-1 activity but not with risk of myocardial infarction in the ECTIM study. Etude CasTemoins de I’nfarctus du Mycocarde. Thromb Haemost 74:837–41.PubMedGoogle Scholar
  91. Ye, S. Q., B. A. Simon, J. P. Maloney, A. Zambelli-Weiner, L. Gao, A. Grant, R. B. Easley, B. J. McVerry, R. M. Tuder, T. Standiford, R. G. Brower, K. C. Barnes, and J. G. Garcia. 2005. Pre-B-cell colony-enhancing factor as a potential novel biomarker in acute lung injury. Am J Respir Crit Care Med 171:361–70.PubMedCrossRefGoogle Scholar
  92. Yee, A. M., S. C. Ng, R. E. Sobel, and J. E. Salmon. 1997. Fc gammaRIIA polymorphism as a risk factor for invasive pneumococcal infections in systemic lupus erythematosus. Arthritis Rheum 40:1180–2.PubMedCrossRefGoogle Scholar
  93. Yuan, F. F., M. Wong, N. Pererva, J. Keating, A. R. Davis, J. A. Bryant, and J. S. Sullivan. 2003. FcgammaRIIA polymorphisms in Streptococcus pneumoniae infection. Immunol Cell Biol 81:192–5.PubMedCrossRefGoogle Scholar
  94. Zhai, R., M. N. Gong, W. Zhou, T. B. Thompson, P. Kraft, L. Su, and D. C. Christiani. 2007. Genotypes and haplotypes of VEGF gene are associated with higher ARDS mortality and lower VEGF plasma levels. Thorax 62:718–22.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Grant W. Waterer
    • 1
    • 2
  1. 1.School of Medicine and PharmacologyUniversity of Western AustraliaAustralia
  2. 2.Department of Respiratory MedicineRoyal Perth HospitalAustralia

Personalised recommendations