Skip to main content

An Approximate Algorithm for Solving the Watchman Route Problem

  • Conference paper
Robot Vision (RobVis 2008)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 4931))

Included in the following conference series:

Abstract

The watchman route problem (WRP) was first introduced in 1988 and is defined as follows: How to calculate a shortest route completely contained inside a simple polygon such that any point inside this polygon is visible from at least one point on the route? So far the best known result for the WRP is an \({\cal O}(n^3 \log n)\) runtime algorithm (with inherent numerical problems of its implementation). This paper gives an \(\kappa(\varepsilon)\times {\cal O}(kn)\) approximate algorithm for WRP by using a rubberband algorithm, where n is the number of vertices of the simple polygon, k the number of essential cuts, ε the chosen accuracy constant for the minimization of the calculated route, and κ(ε) equals the length of the initial route minus the length of the calculated route, divided by ε.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Alsuwaiyel, M.H., Lee, D.T.: Minimal link visibility paths inside a simple polygon. Computational Geometry 3, 1–25 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  2. Alsuwaiyel, M.H., Lee, D.T.: Finding an approximate minimum-link visibility path inside a simple polygon. Information Processing Letters 55, 75–79 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  3. Arkin, E.M., Mitchell, J.S.B., Piatko, C.: Minimum-link watchman tours. Technical report, University at Stony Brook (1994)

    Google Scholar 

  4. Asano, T., Ghosh, S.K., Shermer, T.C.: Visibility in the plane. In: Sack, J.-R., Urrutia, J. (eds.) Handbook of Computational Geometry, pp. 829–876. Elsevier, Amsterdam (2000)

    Google Scholar 

  5. Carlsson, S., Jonsson, H., Nilsson, B.J.: Optimum guard covers and m-watchmen routes for restricted polygons. In: Dehne, F., Sack, J.-R., Santoro, N. (eds.) WADS 1991. LNCS, vol. 519, pp. 367–378. Springer, Heidelberg (1991)

    Chapter  Google Scholar 

  6. Carlsson, S., Jonsson, H., Nilsson, B.J.: Optimum guard covers and m-watchmen routes for restricted polygons. Int. J. Comput. Geom. Appl. 3, 85–105 (1993)

    Article  MATH  Google Scholar 

  7. Carlsson, S., Jonsson, H.: Computing a shortest watchman path in a simple polygon in polynomial-time. In: Sack, J.-R., et al. (eds.) WADS 1995. LNCS, vol. 955, pp. 122–134. Springer, Heidelberg (1995)

    Google Scholar 

  8. Carlsson, S., Jonsson, H., Nilsson, B.J.: Approximating the shortest watchman route in a simple polygon. Technical report, Lund University (1997)

    Google Scholar 

  9. Carlsson, S., Jonsson, H., Nilsson, B.J.: Finding the shortest watchman route in a simple polygon. Discrete Computational Geometry 22, 377–402 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  10. Chin, W., Ntafos, S.: Optimum watchman routes. Information Processing Letters 28, 39–44 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  11. Chin, W.-P., Ntafos, S.: Shortest watchman routes in simple polygons. Discrete Computational Geometry 6, 9–31 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  12. Czyzowicz, J., et al.: The aquarium keeper’s problem. In: Proc. ACM-SIAM Sympos. Data Structures Algorithms, pp. 459–464 (1991)

    Google Scholar 

  13. Dror, M., et al.: Touring a sequence of polygons. In: Proc. STOC, pp. 473–482 (2003)

    Google Scholar 

  14. Gewali, L.P., et al.: Path planning in 0/1/infinity weighted regions with applications. ORSA J. Comput. 2, 253–272 (1990)

    MATH  Google Scholar 

  15. Gewali, L.P., Ntafos, S.: Watchman routes in the presence of a pair of convex polygons. In: Proc. Canad. Conf. Comput. Geom., pp. 127–132 (1995)

    Google Scholar 

  16. Hammar, M., Nilsson, B.J.: Concerning the time bounds of existing shortest watchman routes. In: Chlebus, B.S., Czaja, L. (eds.) FCT 1997. LNCS, vol. 1279, pp. 210–221. Springer, Heidelberg (1997)

    Chapter  Google Scholar 

  17. Kumar, P., Veni Madhavan, C.: Shortest watchman tours in weak visibility polygons. In: Proc. Canad. Conf. Comput. Geom., pp. 91–96 (1995)

    Google Scholar 

  18. Li, F., Klette, R.: Exact and approximate algorithms for the calculation of shortest paths. IMA Minneapolis, Report 2141, www.ima.umn.edu/preprints/oct2006

  19. Mata, C., Mitchell, J.S.B.: Approximation algorithms for geometric tour and network design problems. In: Proc. Annu. ACM Sympos. Comput. Geom., pp. 360–369 (1995)

    Google Scholar 

  20. Melkman, A.: On-line construction of the convex hull of a simple polygon. Information Processing Letters 25, 11–12 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  21. Mitchell, J.S.B., Wynters, E.L.: Watchman routes for multiple guards. In: Proc. Canad. Conf. Comput. Geom., pp. 126–129 (1991)

    Google Scholar 

  22. Mitchell, J.S.B.: Geometric shortest paths and network optimization. In: Sack, J.-R., Urrutia, J. (eds.) Handbook of Computational Geometry, pp. 633–701. Elsevier, Amsterdam (2000)

    Google Scholar 

  23. Moore, T.O.: Elementary General Topology. Prentice-Hall, Englewood Cliffs (1964)

    MATH  Google Scholar 

  24. Nilsson, B.J., Wood, D.: Optimum watchmen routes in spiral polygons. In: Proc. Canad. Conf. Comput. Geom., pp. 269–272 (1990)

    Google Scholar 

  25. Nilsson, B.J.: Guarding art galleries; Methods for mobile guards. Ph.D. Thesis, Lund University, Sweden (1995)

    Google Scholar 

  26. Ntafos, S.: The robber route problem. Inform. Process. Lett. 34, 59–63 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  27. Ntafos, S.: Watchman routes under limited visibility. Comput. Geom. 1, 149–170 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  28. Ntafos, S., Gewali, L.: External watchman routes. Visual Comput. 10, 474–483 (1994)

    Article  Google Scholar 

  29. Sunday, D.: Algorithm 14: Tangents to and between polygons (last visit June 2006), http://softsurfer.com/Archive/algorithm_0201/

  30. Tan, X., Hirata, T., Inagaki, Y.: An incremental algorithm for constructing shortest watchman route algorithms. Int. J. Comp. Geom. and Appl. 3, 351–365 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  31. Tan, X., Hirata, T.: Constructing shortest watchman routes by divide-and-conquer. In: Ng, K.W., et al. (eds.) ISAAC 1993. LNCS, vol. 762, pp. 68–77. Springer, Heidelberg (1993)

    Google Scholar 

  32. Tan, X., Hirata, T., Inagaki, Y.: Corrigendum to ‘An incremental algorithm for constructing shortest watchman routes’. Int. J. Comp. Geom. App. 9, 319–323 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  33. Tan, X.: Fast computation of shortest watchman routes in simple polygons. Information Processing Letters 77, 27–33 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  34. Tan, X.: Approximation algorithms for the watchman route and zookeeper’s problems. In: Wang, J. (ed.) COCOON 2001. LNCS, vol. 2108, pp. 201–206. Springer, Heidelberg (2001)

    Google Scholar 

  35. Tan, X.: Approximation algorithms for the watchman route and zookeeper’s problems. Discrete Applied Mathematics 136, 363–376 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  36. Tan, X.: Linear-time 2-approximation algorithm for the watchman route problem. In: Cai, J.-Y., Cooper, S.B., Li, A. (eds.) TAMC 2006. LNCS, vol. 3959, pp. 181–191. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  37. Urrutia, J.: Geometric shortest paths and network optimization. In: Sack, J.-R., Urrutia, J. (eds.) Handbook of Computational Geometry, pp. 973–1027. Elsevier, Amsterdam (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Gerald Sommer Reinhard Klette

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Li, F., Klette, R. (2008). An Approximate Algorithm for Solving the Watchman Route Problem. In: Sommer, G., Klette, R. (eds) Robot Vision. RobVis 2008. Lecture Notes in Computer Science, vol 4931. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-78157-8_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-78157-8_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-78156-1

  • Online ISBN: 978-3-540-78157-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics