The Role of the Plant Nucleolus in Pre-mRNA Processing

  • J. W. S. Brown
  • P. J. Shaw
Part of the Current Topics in Microbiology and Immunology book series (CT MICROBIOLOGY, volume 326)

The nucleolus is a multifunctional compartment of the eukaryotic nucleus. Besides its well-recognised role in transcription and processing of ribosomal RNA and the assembly of ribosomal subunits, the nucleolus has functions in the processing and assembly of a variety of RNPs and is involved in cell cycle control and senescence and as a sensor of stress. Historically, nucleoli have been tenuously linked to the biogenesis and, in particular, export of mRNAs in yeast and mammalian cells. Recently, data from plants have extended the functions in which the plant nucleolus is involved to include transcriptional gene silencing as well as mRNA surveillance and nonsense-mediated decay, and mRNA export. The nucleolus in plants may therefore have important roles in the biogenesis and quality control of mRNAs.


Nuclear Body Signal Recognition Particle Cajal Body mRNA Export Transcriptional Gene Silence 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Aguilera A (2005) Cotranscriptional mRNP assembly: from the DNA to the nuclear pore. Curr Opin Cell Biol 17:242–250PubMedCrossRefGoogle Scholar
  2. Ang LH, Chattopadhyay S, Wei N, Oyama T, Okada K, Batschauer A, Deng XW (1998) Molecular interaction between COP1 and HY5 defines a regulatory switch for light control of Arabidopsis development. Mol Cell 1:213–222PubMedCrossRefGoogle Scholar
  3. Andersen JS, Lyon CE, Fox AH, Leung AK, Lam YW, Steen H, Mann M, Lamond AI (2002) Directed proteomic analysis of the human nucleolus. Curr Biol 12:1–11PubMedCrossRefGoogle Scholar
  4. Andersen JS, Lam YW, Leung AK, Ogg SE, Lyon CE, Lamond AI, Mann M (2005) Nucleolar proteome dynamics. Nature 433:77–78PubMedCrossRefGoogle Scholar
  5. Andersen CBF, Ballut L, Johansen JS, Chamieh H, Nielsen KH, Oliveira CLP, Pedersen JS, Séraphin B, Le Hir H, Andersen GR (2006) Structure of the exon junction core complex with a trapped DEAD-box ATPase bound to RNA. Science 313:1968–1972PubMedCrossRefGoogle Scholar
  6. Arciga-Reyes L, Wootton L, Kieffer M, Davies B (2006) UPF1 is required for nonsense-mediated mRNA decay (NMD) and RNAi in Arabidopsis. Plant J 47:480–489PubMedCrossRefGoogle Scholar
  7. Barakat A, Szick-Miranda K, Chang L-F, Guyot R, Blanc G, Cooke R, Delseny M, Bailey-Serres J (2001) The organisation of cytoplasmic ribosomal protein genes in the Arabidopsis genome. Plant Physiol 127:398–415PubMedCrossRefGoogle Scholar
  8. Barneche F, Gaspin C, Guyot R, Echeverria M (2001) Identification of 66 box C/D snoRNAs in Arabidopsis thaliana: Extensive gene duplications generated multiple isoforms predicting new ribosomal RNA 2′-O-methylation sites. J Mol Biol 311:57–73PubMedCrossRefGoogle Scholar
  9. Bertrand E, Houser-Scott F, Kendall A, Singer RH, Engelke DR (1998) Nucleolar localization of early tRNA processing genes. Genes Dev 12:2463–2468PubMedCrossRefGoogle Scholar
  10. Beven AF, Lee R, Razaz M, Leader DJ, Brown JWS, Shaw PJ (1996) The organization of ribosomal RNA processing correlates with the distribution of nucleolar snRNAs. J Cell Sci 109:1241–1251PubMedGoogle Scholar
  11. Beven AF, Simpson GG, Brown JWS, Shaw PJ (1995) The organization of spliceosomal components in the nuclei of higher plants. J Cell Sci 108:509–51PubMedGoogle Scholar
  12. Bond VC, Wold B (1993) Nucleolar localisation of myc transcripts. Mol Cell Biol 13:3221–3230PubMedGoogle Scholar
  13. Boyne JR, Whitehouse A (2006) Nucleolar trafficking is essential for nuclear export of intronless herpesvirus mRNA. Proc Natl Acad Sci USA 103:15190–15195PubMedCrossRefGoogle Scholar
  14. Boisvert F-M, van Koningsbruggen S, Navascués J, Lamond AI (2007) The multifunctional nucleolus. Nat Rev Mol Cell Biol 8:574–585PubMedCrossRefGoogle Scholar
  15. Boudonck K, Dolan L, Shaw PJ (1998) Coiled body numbers in the Arabidopsis root epidermis are regulated by cell type, developmental stage and cell cycle parameters. J Cell Sci 111:3687–3694PubMedGoogle Scholar
  16. Boudonck K, Dolan L, Shaw PJ (1999) The movement of coiled bodies visualized in living plant cells by the green fluorescent protein. Mol Biol Cell 10:2297–2307PubMedGoogle Scholar
  17. Brodsky AS, Silver PA (2000) Pre-mRNA processing factors are required for nuclear export. RNA 6:1737–1749PubMedCrossRefGoogle Scholar
  18. Brown JWS, Clark GP, Simpson, CG, Leader DJ, Lowe TM (2001) Multiple snoRNA gene clusters from Arabidopsis. RNA 7:5718–5732Google Scholar
  19. Brown JWS, Echeverria M, Qu L-H (2003) Plant snoRNAs: functional evolution and new modes of gene expression. Trends Plant Sci 8:42–49PubMedCrossRefGoogle Scholar
  20. Brown JWS, Shaw PJ (1998) Small nucleolar RNAs and pre-rRNA processing in plants. Plant Cell 10:649–657PubMedCrossRefGoogle Scholar
  21. Bühler M, Steiner S, Mohn F, Paillusson A, Mühlemann O (2006) EJC-independent degradation of nonsense immunoglobulin-μ mRNA depends on 3′ UTR length. Nat Struct Mol Biol 13:462–464PubMedCrossRefGoogle Scholar
  22. Canto T, Uhrig JF, Swanson M, Wright KM, MacFarlane SA (2006) Translocation of Tomato Bushy Stunt Virus p19 protein into the nucleus by ALY proteins compromises its silencing suppressor activity. J Virol 80:9064–9072PubMedCrossRefGoogle Scholar
  23. Carneiro T, Carvalho C, Braga J, Rino J, Milligan L, Tollervey D, Carmo-Fonseca M (2007) Depletion of the yeast nuclear exosome subunit Rrp6 results in accumulation of polyadenylated RNAs in a discrete domain within the nucleolus. Mol Cell Biol 27:4157–4165PubMedCrossRefGoogle Scholar
  24. Cech TR (2004) Beginning to understand the end of the chromosome. Cell 116:273–279PubMedCrossRefGoogle Scholar
  25. Chen M, Schwab R, Chory J (2003) Characterization of the requirements for localization of phytochrome B to nuclear bodies. Proc Natl Acad Sci USA 100:14493–14498PubMedCrossRefGoogle Scholar
  26. Cheutin T, Misteli T, Dundr M (2004) Dynamics of nucleolar components. In: The Nucleolus (ed. Olsen, M.O.J.) Landes, Georgetown, USA/Kluwer, New York, USA. pp 29–40Google Scholar
  27. Cioce M, Lamond AI (2005) Cajal bodies: a long history of discovery. Annu Rev Cell Dev Biol 21:105–131PubMedCrossRefGoogle Scholar
  28. Collier S, Pendle A, Boudonck K, van Rij T, Dolan L, Shaw PJ (2006) A distant coilin homologue is required for the formation of Cajal bodies in Arabidopsis. Mol Biol Cell 17:2942–2951PubMedCrossRefGoogle Scholar
  29. Conti E, Izzuralde E (2005) Nonsense-mediated decay: molecular insights and mechanistic variations across species. Curr Opin Cell Biol 17:316–325PubMedCrossRefGoogle Scholar
  30. Culbertson MR, Leeds PF (2003) Looking at mRNA decay pathways through the window of molecular evolution. Curr Opin Genet Dev 13:207–214PubMedCrossRefGoogle Scholar
  31. Custódio N, Carvalho C, Condado I, Antoniou M, Blencowe BJ, Carmo-Fonseca M (2004) In vivo recruitment of exon junction complex proteins to transcription sites in mammalian cell nuclei. RNA 10:622–633PubMedCrossRefGoogle Scholar
  32. Darzacq X, Jády BE, Verheggen C, Kiss AM, Bertrand E, Kiss T (2002) Cajal body-specific small nuclear RNAs: a novel class of 2′-O-methylation and pseudouridylation guide RNAs. EMBO J 21:2746–2756PubMedCrossRefGoogle Scholar
  33. Decatur WA, Fournier MJ (2002) rRNA modifications and ribosome function. Trends Biochem. Sci 7:344–351CrossRefGoogle Scholar
  34. Dove BK, You JH, Reed ML, Emmett SR, Brooks G, Hiscox JA (2006) Changes in nucleolar morphology and proteins during infection with the corona virus infectious bronchitis virus. Cell Microbiol 8:1147–1157PubMedCrossRefGoogle Scholar
  35. Dragon F, Gallagher JE, Compangnone-Post PA, Mitchell BM, Porwancher KA, Wehner KA, Wormsley S, Settlage RE, Shabanowitz J, Osheim Y, Beyer AL, Hunt DF, Baserga SJ (2002) A large nucleolar U3 ribonucleoprotein required for 18S ribosomal RNA biogenesis. Nature 417:967–970PubMedCrossRefGoogle Scholar
  36. Etheridge KT, Banik SS, Armbruster B N, Zhu Y, Terns RM, Terns MP, Counter CM (2002) The nucleolar localisation domain of of the catalytic subunit of human telomerase. J Biol Chem 277:24764–24770PubMedCrossRefGoogle Scholar
  37. Fatica A, Tollervey D (2002) Making ribosomes. Curr Opin Cell Biol 14:313–318PubMedCrossRefGoogle Scholar
  38. Frey MR, Matera AG (1995) Coiled bodies contain U7 small nuclear RNA and associate with specific DNA sequences in interphase human cells. Proc Natl Acad Sci USA 92:5915–5919PubMedCrossRefGoogle Scholar
  39. Gallagher JE, Dunbar DA, Grannemann S, Mitchell BM, Osheim Y, Beyer AL, Baserga SJ (2004) RNA polymerase I transcription and pre-rRNA processing are linked by specific SSU processosome components. Genes Dev 18:2506–2517PubMedCrossRefGoogle Scholar
  40. Ganot P, Jady BE, Bortolin ML, Darzacq X, Kiss T (1999) Nucleolar factors direct the 2′-O-ribose methylation and pseudouridylation of U6 spliceosomal RNA. Mol Cell Biol 19:6909–6917Google Scholar
  41. Gatfield D, Izurralde E (2002) REF1/Aly and the additional exon junction complex proteins are dispensible for nuclear mRNA export. J Cell Biol 159:579–588PubMedCrossRefGoogle Scholar
  42. Gerbi SA, Lange TS (2002) All small nuclear RNAs (snRNAs) of the [U4/U6.U5] tri-snRNP localize to nucleoli; Identification of the nucleolar localization element of U6 snRNA. Mol Biol Cell 13:3123–3137PubMedCrossRefGoogle Scholar
  43. Gonzalez-Melendi P, Wellis B, Beven AF, Shaw PJ (2001) Single ribosomal transcription units are linear, compacted Christmas trees in plant nucleoli. Plant J 27:223–233PubMedCrossRefGoogle Scholar
  44. Gorski, SA, Dundr M, Misteli T (2006) The road much travelled: trafficking in the cell nucleus. Curr Opin Cell Biol 18:284–290PubMedCrossRefGoogle Scholar
  45. Grandi P, Rybin V, Bassker J, Petfalski E, Strauss D, Marzioch M, Schafer T, Kuster B, Tschochner H, Tollervey D, Gavin A-C, Hurt E (2002) 90S pre-ribosomes include the 35S pre-rRNA, the U3 snoRNP, and 40S subunit processing factors but predominantly lack 60S synthesis factors. Mol Cell 10:105–115PubMedCrossRefGoogle Scholar
  46. Grannemann S, Baserga SJ (2004) Ribosome biogenesis: of knobs and RNA processing. Exp Cell Res 296:43–50CrossRefGoogle Scholar
  47. Grannemann S, Baserga SJ (2005) Crosstalk in gene expression: coupling and co-regulation of rDNA transcription, pre-ribosome assembly and pre-rRNA processing. Curr Opin Cell Biol 17:281–286CrossRefGoogle Scholar
  48. Grosshans H, Deinart K, Hurt E, Simos G (2001) Biogenesis of the signal recognition particle (SRP) involves import of SRP proteins into the nucleolus, assembly with SRP-RNA, and Xpo1p-mediated export. J Cell Biol 153:745–762PubMedCrossRefGoogle Scholar
  49. Han MH, Goud S, Song L, Fedoroff N (2004) The Arabidopsis double-stranded RNA-binding protein HYL1 plays a role in microRNA-mediated gene regulation. Proc Natl Acad Sci USA 101:1093–1098PubMedCrossRefGoogle Scholar
  50. Handwerger KE, Gall JG (2006) Subnuclear organelles: new insights into form and function. Trends Cell Biol 16:19–26PubMedCrossRefGoogle Scholar
  51. Hernandez-Pinzon I, Yelina NE, Schwach F, Studholme DJ, Baulcombe D, Dalmay T (2007) SDE5, the putative homologue of a human mRNA export factor, is required for transgene silencing and accumulation of trans-acting endogenous siRNA. Plant J 50:140–148PubMedCrossRefGoogle Scholar
  52. Hiscox JA (2002) The nucleolus—a gateway to viral infection? Arch Virol 147:1077–1089PubMedCrossRefGoogle Scholar
  53. Hiscox JA (2007) RNA viruses: hijacking the dynamic nucleolus. Nat Rev Microbiol 5:119–127PubMedCrossRefGoogle Scholar
  54. Hope TJ (1999) The ins and outs of HIV. Rev Arch Biochem Biophys 365:186–191CrossRefGoogle Scholar
  55. Hopper AK, Phizicky EM (2003) tRNA transfers to the limelight. Genes Dev 17:162–180PubMedCrossRefGoogle Scholar
  56. Hori K, Watanabe Y (2005) UPF3 suppresses aberrant spliced mRNA in Arabidopsis. Plant J 43:530–540PubMedCrossRefGoogle Scholar
  57. Ideue T, Azad AK, Yoshida J, Matsusaka T, Yanagida M, Ohshima Y, Tani T (2004) The nucleolus is involved in mRNA export from the nucleus in fission yeast. J Cell Sci 117:2887–2895PubMedCrossRefGoogle Scholar
  58. Jacobson MR, Cao LG, Taneja K, Singer RH, Wang YL, Pederson T (1997) Nuclear domains of RNA subunit of RNase P. J Cell Sci 110:829–837PubMedGoogle Scholar
  59. Jacobsen MR, Pederson T (1998) Localization of signal recognition particle RNA in the nucleolus of mammalian cells. Proc Natl Acad Sci USA 95:7981–7986CrossRefGoogle Scholar
  60. Jady BE, Darzacq X, Tucker KE, Matera AG, Bertrand E, Kiss T (2003) Modification of Sm small nuclear RNAs occurs in the nucleoplasmic Cajal body following import from the cytoplasm. EMBO J 22:1878–1888PubMedCrossRefGoogle Scholar
  61. Jady BE, Bertrand E, Kiss T (2004) Human telomerase RNA and box H/ACA scaRNAs share a common Cajal body-specific localization signal. J Cell Biol 164:647–652PubMedCrossRefGoogle Scholar
  62. Jarrous N, Wolenski JS, Wesolowski D, Lee C, Altmann S (1999) Localisation in the nucleolus and coiled bodies of protein subunits of the ribonucleoprotein ribonuclease P. J Cell Biol 146:559–572PubMedCrossRefGoogle Scholar
  63. Kadowaki T, Schneiter R, Hitomi M, Tartakoff AM (1995) Mutations in nucleolar proteins lead to nucleolar accumulation of poly(A) + RNA in Saccharomyces cerevisiae. Mol Biol Cell 6:1103–1110PubMedGoogle Scholar
  64. Kertész S, Keréyi Z, Mérai Z, Bartos I, Palfy T, Barta E, Silhavy D (2006) Both introns and long 3′-UTRs operate as cis-acting elements to trigger nonsense-mediated decay in plants. Nucl Acids Res 34:6147–6157PubMedCrossRefGoogle Scholar
  65. Kim SH, Ryabov EV, Kalinina NO, Rakitina DV, Gillespie T, Haupt S, MacFarlane S, Brown JWS, Taliansky M (2007a) Cajal bodies, the nucleolus and fibrillarin are required for a plant virus systemic infection. EMBO J 26:2169–2179PubMedCrossRefGoogle Scholar
  66. Kim SH, MacFarlane S, Kalinina NO, Rakitina DV, Ryabov EV, Gillespie T, Haupt S, Brown JWS, Taliansky M (2007b) Interaction of a plant virus-encoded protein with the major nucleolar protein fibrillarin is required for systemic virus infection. Proc Natl Acad Sci USA 104:11115–11120PubMedCrossRefGoogle Scholar
  67. Kircher S, Gil P, Kozma-Bogna L, Fejes E, Speth V, Husselstein-Muller T, Bauer D, Adam E, Schafer E, Nagy F (2002) Nucleocytoplasmic partitioning of the plant photoreceptors phytochrome A, B, C, D, and E is regulated differentially by light and exhibits a diurnal rhythm. Plant Cell 14:1541–1555PubMedCrossRefGoogle Scholar
  68. Kiss T (2002) Small nucleolar RNAs: An abundant group of non-coding RNAs with diverse cellular functions. Cell 109:145–148PubMedCrossRefGoogle Scholar
  69. Lange TS, Gerbi SA (2000) Transient nucleolar localization of U6 small nuclear RNA in Xenopus laevis oocytes. Mol Biol Cell 11:2419–2428PubMedGoogle Scholar
  70. Lamond AI, Spector DL (2003) Nuclear speckles: a model for nuclear organelles. Nat Rev Mol Cell Biol 4:605–612PubMedCrossRefGoogle Scholar
  71. Lejeune F, Maquat LE (2005) Mechanistic links between nonsense-mediated mRNA decay and pre-mRNA splicing in mammalian cells. Curr Opin Cell Biol 17:309–315PubMedCrossRefGoogle Scholar
  72. Leung AK, Lamond AI (2003) The dynamics of the nucleolus. Crit Rev Eukaryot Gene Expr 13:39–54PubMedCrossRefGoogle Scholar
  73. Leung AKL, Gerlich D, Miller G, Lyon CE, Lam YW, Lleres D, Daigle N, Zomerdijk J, Ellenberg J, Lamond AI (2004) Quantitative kinetic analysis of nucleolar breakdown and reassembly during mitosis in live human cells. J Cell Biol 166:787–800PubMedCrossRefGoogle Scholar
  74. Leung AK, Trinkle-Mulcahy L, Lam YW, Andersen JS, Mann M Lamond AI (2006) NoPdb: Nucleolar Proteome Database Nucleic Acids Res. 34:218–20Google Scholar
  75. Li CF, Pontes O, El-Shami M, Henderson IR, Bernatavichute YV, Chan SW-L, Lagrange T, Pikaard CS, Jacobsen SE (2006) An ARGONAUTE4-containing nuclear processing center colocalized with Cajal bodies in Arabidopsis thaliana. Cell 126:93–106PubMedCrossRefGoogle Scholar
  76. Li J, Kinoshita T, Pandey S, Ng CK, Gygi SP, Shimazaki K, Assmann SM (2002) Modulation of an RNA-binding protein by abscisic-acid-activated protein kinase. Nature 418:793–797PubMedCrossRefGoogle Scholar
  77. Longman D, Johnstone JL, Cáceres JF (2003) The Ref/Aly proteins are dispensable for mRNA export and development in Caenorhabditis elegans . RNA 9:881–891PubMedCrossRefGoogle Scholar
  78. Lorkovic´ ZJ, Hilscher J, Barta A (2004) Use of fluorescent protein tags to study nuclear organisation of the spliceosomal machinery in transiently transformed living plant cells. Mol Biol Cell 15:3233–3243PubMedCrossRefGoogle Scholar
  79. Lukowiak AA, Narayanan A, Li ZH, Terns RM, Terns MP (2001) The snoRNA domain of vertebrate telomerase RNA functions to localize the RNA within the nucleus. RNA 7:1833–1844PubMedGoogle Scholar
  80. MacMorris M, Brocker C, Blumenthal T (2003) UAP56 levels affect viability and mRNA export in Caenorhabditis elegans. RNA 9:847–857PubMedCrossRefGoogle Scholar
  81. Maquat LE (2004) Nonsense-mediated mRNA decay: splicing, translation and mRNA dynamics. Nat Rev Mol Cell Biol 5:89–99PubMedCrossRefGoogle Scholar
  82. Marker C, Zemann A, Terhorst T, Kiefmann M, Kastenmayer JP, Green P, Bachellerie JP, Brosius J, Huttenhofer A (2002) Experimental RNomics: identification of 140 candidates for small non-messenger RNAs in the plant Arabidopsis thaliana. Curr Biol 12:2002–2013PubMedCrossRefGoogle Scholar
  83. Maser RS, DePinho RA (2002) Connecting chromosomes, crisis and cancer. Science 297:565–569PubMedCrossRefGoogle Scholar
  84. Matera AG (1999) Nuclear bodies: multifaceted subdomains of the interchromatin space. Trends Cell Biol 19:302–309CrossRefGoogle Scholar
  85. Michienzi A, Cagnon L, Bahner I, Rossi JJ (2000) Ribozyme-mediated inhibition of HIV 1 suggests nucleolar trafficking of HIV-1 RNA. Proc Natl Acad Sci USA 97:8955–8960PubMedCrossRefGoogle Scholar
  86. Miller OLJ, Beatty RR (1969) Visualisation of nucleolar genes. Science 164:955–957PubMedCrossRefGoogle Scholar
  87. Misteli T (2005) Concepts in nuclear architecture. BioEssays 27:477–487PubMedCrossRefGoogle Scholar
  88. Mitchell JR, Cheng J, Collins K (1999a) A box H/ACA small nucleolar RNA-like domain at the human telomerase RNA 3′ end. Mol Cell Biol 19:567–576PubMedGoogle Scholar
  89. Mitchell JR, Collins K (2000) Human telomerase activation requires two independent interactions between telomerase RNA and telomerase reverse transcriptase. Mol Cell 6:361–371PubMedCrossRefGoogle Scholar
  90. Mosgoeller W (2004) Nucleolar ultrastructure in vertebrates. In: The Nucleolus (ed. Olsen, M.O.J.) Landes, Georgetown, USA/Kluwer, New York, USA. pp 10–19Google Scholar
  91. Narayanan A, Speckmann W, Terns R, Terns MP (1999) Role of the box C/D motif in localization of small nucleolar RNAs to coiled bodies and nucleoli. Mol Biol Cell 10:2131–2147PubMedGoogle Scholar
  92. Olsen MOJ, Dundr M, Szebeni A (2000) The nucleolus: an old factory with unexpected capabilities. Trends Cell Biol 10:189–196CrossRefGoogle Scholar
  93. Olsen MOJ (2004) Non-traditional roles of the nucleolus. In: The Nucleolus (ed. Olsen, M.O.J.) Landes, Georgetown, USA/Kluwer, New York, USA. pp 329–342Google Scholar
  94. Palacios I M, Gatfield G, St. Johnston D, Izaurralde E (2004) An eiF4AIII-containiung complex required for mRNA localization and nonsense-mediated decay. Nature 427:753–757PubMedCrossRefGoogle Scholar
  95. Pederson T (1998) The plurifunctional nucleolus. Nucl Acids Res 26:3871–3876PubMedCrossRefGoogle Scholar
  96. Pendle AF, Clark GP, Boon R, Lewandowska D, Lam YW, Andersen J, Mann M, Lamond AI, Brown JWS, Shaw PJ (2005) Proteomic analysis of the Arabidopsis nucleolus suggests novel nucleolar functions. Mol Biol Cell 16:260–269PubMedCrossRefGoogle Scholar
  97. Pillai RS, Will CL, Luhrmann R, Schumerli D, Muller B (2001) Purified U7 snRNPs lack the Sm proteins D1 andD2 but contain Lsm10, a new 14 kDa Sm D1-like protein. EMBO J 20:5470–5479PubMedCrossRefGoogle Scholar
  98. Politz JC, Polena I, Trask I, Bazett-Jones DP, Pederson T (2005) A nonribosomal landscape in the nucleolus revealed by the stem cell protein nucleostemin. Mol Biol Cell 16:3401–3410PubMedCrossRefGoogle Scholar
  99. Pontes O, Li CF, Nunes PC, Haag J, Ream T, Vitins A, Jacobsen SE, Pikaard CS (2006) The Arabidopsis chromatin-modifying nuclear siRNA pathway involves a nucleolar RNA processing center. Cell 126:79–92PubMedCrossRefGoogle Scholar
  100. Pontvianne F, Matia I, Douet J, Tourmente S, Medina FJ, Echeverria M, Saez-Vasquez J (2007) Characterization of AtNUC-L1 reveals a central role of nucleolin in nucleolus organization and silencing of AtNUC-L2 gene in Arabidopsis. Mol Biol Cell 18:369–379PubMedCrossRefGoogle Scholar
  101. Qu LH, Meng Q, Zhou L, Chen Y-Q (2001) Identification of 10 novel snoRNA gene clusters from Arabidopsis thaliana. Nucl Acids Res 29:1623–1630PubMedCrossRefGoogle Scholar
  102. Reed R, Hurt E (2002) A conserved mRNA export machinery coupled to pre-mRNA splicing. Cell 108:523–531PubMedCrossRefGoogle Scholar
  103. Reed R, Cheng H (2005) TREX, SR proteins and export of mRNA. Curr Opin Cell Biol 17:269–273PubMedCrossRefGoogle Scholar
  104. Raška I, Shaw PJ, Cmarko D (2006) Structure and function of the nucleolus in the spotlight. Curr Opin Cell Biol 18:325–334PubMedCrossRefGoogle Scholar
  105. Rubbi CP, Milner J (2003) Disruption of the nucleolus mediates stabilisation of p53 in response to DNA damage and other stresses. EMBO J 22:6068–6077PubMedCrossRefGoogle Scholar
  106. Saez-Vasquez J, Caparros-Ruiz D, Barneche F, Echeverria M (2004) A plant snoRNP complex containing snoRNAs, fibrillarin and nucleolin-like proteins is competent for both rRNA gene binding and pre-rRNA processing in vitro. Mol Cell Biol 24:7284–7297PubMedCrossRefGoogle Scholar
  107. Scherl A, Couté Y, Déon C, Callé A, Kindbeiter K, Sanchez J-C, Greco A, Hochstrasse D, Diaz J-J (2002) Functional proteomics analysis of human nucleolus. Mol Biol Cell 13:4100–4109PubMedCrossRefGoogle Scholar
  108. Schafer T, Strauss D, Petfalski E, Tollervey D, Hurt E (2003) The path from nucleolar 90S to cytoplasmic 40S pre-ribosomes. EMBO J 22:1370–1380PubMedCrossRefGoogle Scholar
  109. Schneiter R, Kadowaki T, Tartakoff AM (1995) mRNA transport in yeast: time to reinvestigate the functions of the nucleolus. Mol Biol Cell 6:357–370PubMedGoogle Scholar
  110. Shaw PJ, Brown JWS (2004) Plant nuclear bodies. Curr Opin Plant Biol 7:614–620PubMedCrossRefGoogle Scholar
  111. Shaw PJ, Jordan EG (1995) The nucleolus. Annu Rev Cell Dev Biol 11:93PubMedCrossRefGoogle Scholar
  112. Shaw PJ, Beven AF, Leader DJ, Brown JWS (1998) Localization and processing from a polycistronic precursor of novel snoRNAs in maize. J Cell Sci 111:2121–2128PubMedGoogle Scholar
  113. Sleeman JE, Lamond AI (1999) Newly assembled snRNPs associate with coiled bodies before speckles, suggesting a nuclear snRNP maturation pathway. Curr Biol 9:1065–1074PubMedCrossRefGoogle Scholar
  114. Song L, Han MH, Lesicka J, Fedoroff NV (2007) Arabidopsis primary microRNA processing proteins HYL1 and DCL1 define a nuclear body distinct from the Cajal body Proc Natl Acad Sci USA 104:5437–5442PubMedCrossRefGoogle Scholar
  115. Steiner-Mosonyi M, Mangroo D (2004) The nuclear tRNA aminoacylation-dependent pathway may be the principal route used to export tRNA from the nucleus in Saccharomyces cerevisiae. Biochem J 378:809–816PubMedCrossRefGoogle Scholar
  116. Stutz F, Izaurralde E (2003) The interplay of nuclear mRNP assembly, mRNA surveillance and export. Trends Cell Biol 13:319–327PubMedCrossRefGoogle Scholar
  117. Tange TO, Nott A Moore MJ (2004) The ever-increasing complexities of the exon junction complex. Curr Opin Cell Biol 16:279–284PubMedCrossRefGoogle Scholar
  118. Tani T, Derby RJ, Hiraoka Y, Spector DL (1995) Nucleolar accumulation of poly(A) + RNA in heat-shocked yeast cells: implication of nucleolar involvement in mRNA transport. Mol Biol Cell 6:1515–1534PubMedGoogle Scholar
  119. Tate WP, Poole ES (2004) My favorite organelle: The ribosome: lifting the veil from a fascinating organelle. Bioessays 26:582–588PubMedCrossRefGoogle Scholar
  120. Tillemans V, Leponce I, Rausin G, Dispa L, Motte P (2006) Insights into nuclear organisation in plants as revealed by the dynamic distribution of Arabidopsis SR splicing factors. Plant Cell 18:3218–3234PubMedCrossRefGoogle Scholar
  121. Uhrig JF, Canto T, Marshall DF, MacFarlane SA (2004) Relocalisation of nuclear ALY proteins to the cytoplasm by the Tomato Bushy Stunt Virus p19 pathogenicity protein. Plant Physiol 135:2411–2423PubMedCrossRefGoogle Scholar
  122. van Hoof A, Green PJ (2006) NMD in plants. NMD in plants. In Nonsense-mediated mRNA decay, L. Maquat, ed. (Landes Bioscience, USA)Google Scholar
  123. Venema J, Tollervey D (1999) Ribosome synthesis in Saccharomyces cerevisiae. Annu Rev Genet 33:261–311PubMedCrossRefGoogle Scholar
  124. Wong JM, Kusdra L, Collins K (2002) Subnuclear shuttling of human telomerase induced by transformation and DNA damage. Nat Cell Biol 4:731–736PubMedCrossRefGoogle Scholar
  125. Walter P, Johnson AE (1994) Signal sequence recognition and protein targeting to the endoplasmic reticulum membrane. Annu Rev Cell Biol 10:87–119PubMedCrossRefGoogle Scholar
  126. Williams BJL, Boyne JR, Goodwin DJ, Roaden L, Hautbergue GM, Wilson SA, Whitehouse A (2005) The prototype gamma-2 herpesvirus nucleocytoplasmic shuttling protein, ORF 57, transports viral RNA through the cellular mRNA export pathway. Biochem J 387:295–308PubMedCrossRefGoogle Scholar
  127. Yamaguchi R, Nakamura M, Mochizuki N, Kay SA, Nagatani A (1999) Light-dependent translocation of a phytochrome B-GFP fusion protein to the nucleus in transgenic Arabidopsis. J Cell Biol 145:437–445PubMedCrossRefGoogle Scholar
  128. Yu YT, Shu MD, Narayanan A, Terns RM, Terns MP, Steitz JA (2001) Internal modification of U2 small nuclear (sn) RNA occurs in nucleoli of Xenopus oocytes. J Cell Biol 152:1279–1288PubMedCrossRefGoogle Scholar
  129. Zhu Y, Tomlinson, RL, Lukowiak AA, Terns RM, Terns MP (2004) Telomerase RNA accumulates in Cajal bodies in human cancer cells. Mol Biol Cell 15:81–90PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • J. W. S. Brown
    • 1
  • P. J. Shaw
    • 2
  1. 1.Plant Sciences Division, College of Life SciencesUniversity of Dundee at SCRIDundeeScotland, UK
  2. 2.Department of Cell BiologyJohn Innes CentreNorwichUK

Personalised recommendations