Advertisement

Pädiatrie pp 804-836 | Cite as

Virale Infektionen

  • J. Forster
  • V. Schuster
  • H. W. Kreth
  • D. Nadal
  • H. -J. Schmitt
Chapter
  • 189 Downloads

Auszug

Adenoviren verursachen im Kindesalter Krankheiten der Atemwege und des Darms, aber auch Krankheiten der Harnwege, der Lymphorgane und kardiologische und neurologische Manifestationen werden beobachtet. Einige typische Krankheitsbilder können klinisch diagnostiziert werden.

Literatur

Literatur

  1. Brandt CD, Kim HW, Vargosko AJ et al. (1969) Infections in 18,000 infants and children in a controlled study of respiratory tract disease. I. Adenovirus pathogenicity in relation to sérologic type and illness syndrome. Am J Epidemiol 90: 484–500PubMedCrossRefGoogle Scholar
  2. Hoffman JA, Shah AJ, Ross LA, Kapoor N (2001) Adenoviral infections and a prospective trial of cidofovir in pediatric hematopoietic stem cell transplantation. Biol Blood Marrow Transplant 7: 388–394PubMedCrossRefGoogle Scholar
  3. McCarthy AJ, Bergin M, Silva LM de, Stevens M (1995) Intravenous ribavirin therapy for disseminated adenovirus infection. Pediatr Infect Dis J 14: 1003–1004PubMedCrossRefGoogle Scholar
  4. Schleuning M, Buxbaum-Conradi H, Jager G, Kolb HJ (2004) Intravenous ribavirin for eradication of respiratory syncytial virus (RSV) and adenovirus isolates from the respiratory and/or gastrointestinal tract in recipients of allogeneic hematopoietic stem cell transplants. Hematol J 5: 135–144PubMedCrossRefGoogle Scholar
  5. Watzinger F, Suda M, Preuner S et al. (2004) Real-time quantitative PCR assays for detection and monitoring of pathogenic human viruses in immunosuppressed pediatric patients. J Clin Microbiol 42: 5189–5198PubMedPubMedCentralCrossRefGoogle Scholar

Literatur

  1. Gern JE, Galagan DM, Jarjour NN et al. (1997) Detection of rhinovirus RNA in lower airway cells during experimentally induced infection. Am J Respir Crit Care Med 155: 1159–1161PubMedCrossRefGoogle Scholar
  2. Jartti T, Lehtinen P, Vuorinen T et al. (2004) Respiratory picornaviruses and respiratory syncytial virus as causative agents of acute expiratory wheezing in children. Emerg Infect Dis 10: 1095–1101PubMedPubMedCentralCrossRefGoogle Scholar
  3. Kling S, Donninger H, Williams Z et al. (2005) Persistence of rhinovirus RNA after asthma exacerbation in children. Clin Exp Allergy 35: 672–678PubMedCrossRefGoogle Scholar
  4. Korppi M, Kotaniemi-Syrjanen A, Waris M et al. (2004) Rhinovirus-associated wheezing in infancy: comparison with respiratory syncytial virus bronchiolitis. Pediatr Infect Dis J 23: 995–999PubMedCrossRefGoogle Scholar
  5. Turner RB (1997) Epidemiology, pathogenesis, and treatment of the common cold. Ann Allergy Asthma Immunol 78: 531–539; quiz 539–540PubMedCrossRefGoogle Scholar

Literatur

  1. Abzug MJ, Cloud G, Bradley J et al.; National Institute of Allergy and Infectious Diseases Collaborative Antiviral Study Group (2003) Double blind placebo-controlled trial of pleconaril in infants with enterovirus meningitis. Pediatr Infect Dis J 22: 335–341PubMedGoogle Scholar
  2. Jartti T, Lehtinen P, Vuorinen T et al. (2004) Respiratory picornaviruses and respiratory syncytial virus as causative agents of acute expiratory wheezing in children. Emerg Infect Dis 10: 1095–1101PubMedPubMedCentralCrossRefGoogle Scholar
  3. Kearns GL, Bradley JS, Jacobs RF et al. (2000) Single dose pharmacokinetics of pleconaril in neonates. Pediatric Pharmacology Research Unit Network. Pediatr Infect Dis J 19: 833–839PubMedCrossRefGoogle Scholar
  4. Sawyer MH (2002) Enterovirus infections: diagnosis and treatment. Semin Pediatr Infect Dis 13: 40–47PubMedCrossRefGoogle Scholar

Literatur

  1. Bueving HJ, Bernsen RM, Jongste JC de et al. (2004) Influenza vaccination in children with asthma: randomized double-blind placebo-controlled trial. Am J Respir Crit Care Med 169: 488–493PubMedCrossRefGoogle Scholar
  2. Cooper NJ, Sutton AJ, Abrams KR et al. (2003) Effectiveness of neuraminidase inhibitors in treatment and prevention of influenza A and B: systematic review and meta-analyses of randomised controlled trials. BMJ 326: 1235PubMedPubMedCentralCrossRefGoogle Scholar
  3. Denison MR (2004) Severe acute respiratory syndrome coronavirus pathogenesis, disease and vaccines: an update. Pediatr Infect Dis J 23: S207–214PubMedCrossRefGoogle Scholar
  4. Jefferson T, Smith S, Demicheli V et al. (2005) Assessment of the efficacy and effectiveness of influenza vaccines in healthy children: systematic review. Lancet 365: 773–780PubMedCrossRefGoogle Scholar
  5. Johnston SL, Ferrero F, Garcia ML, Dutkowski R (2005) Oral oseltamivir improves pulmonary function and reduces exacerbation frequency for influenza-infected children with asthma. Pediatr Infect Dis J 24: 225–232PubMedCrossRefGoogle Scholar
  6. Uyeki TM (2003) Influenza diagnosis and treatment in children: a review of studies on clinically useful tests and antiviral treatment for influenza. Pediatr Infect Dis J 22: 164–177PubMedGoogle Scholar

Literatur

  1. Knott AM, Long CE, Hall CB (1994) Parainfluenza viral infections in pediatric outpatients: seasonal patterns and clinical characteristics. Pediatr Infect Dis J 13: 269–273PubMedCrossRefGoogle Scholar
  2. Lindquist SW, Darnule A, Istas A, Demmler GJ (1997) Parainfluenza virus type 4 infections in pediatric patients. Pediatr Infect Dis J 16: 34–38PubMedCrossRefGoogle Scholar
  3. Marx A, Török TJ, Holman RC et al. (1997) Pediatric hospitalizations for croup (laryngotracheobronchitis): biennial increases associated with human parainfluenza virus 1 epidemics. J Infect Dis 176: 1423–1427PubMedCrossRefGoogle Scholar
  4. Reed G, Jewett PH, Thompson J et al. (1997) Epidemiology and clinical impact of parainfluenza virus infections in otherwise healthy infants and young children <5 years old. J Infect Dis 175: 807–813PubMedCrossRefGoogle Scholar
  5. Williams JV, Harris PA, Tollefson SJ et al. (2004) Human metapneumovirus and lower respiratory tract disease in otherwise healthy infants and children. N Engl J Med 350: 443–450PubMedPubMedCentralCrossRefGoogle Scholar

Literatur

  1. Anderson LJ, Heilman CA (1995) Protective and disease-enhancing immune responses to respiratory syncytial virus. J Infect Dis 171: 1–7PubMedCrossRefGoogle Scholar
  2. Feltes TF, Cabalka AK, Meissner HC et al.; Cardiac Synagis Study Group (2003) Palivizumab prophylaxis reduces hospitalization due to respiratory syncytial virus in young children with hemodynamically significant congenital heart disease. J Pediatr 143: 532–540PubMedCrossRefGoogle Scholar
  3. IMpact-RSV Study Group (1998) Palivizumab, a humanized respiratory syncytial virus monoclonal antibody reduces hospitalization from respiratory syncytial virus infection in high-risk infants. Pediatrics 102: 531–537CrossRefGoogle Scholar
  4. Hall CB (1998) Respiratory syncytial virus. In: Feigin RD, Cherry JD (eds) Textbook of pediatric infectious diseases, 4th edn. Saunders, Philadelphia, pp 2084–2111Google Scholar
  5. Wang EE, Law BJ, Stephens D (1995) Pediatric Investigators Collaborative Network on Infections in Canada (PICNIC) prospective study of risk factors and outcomes in patients hospitalized with respiratory syncytial viral lower respiratory tract infection. J Pediatr 126: 212–219PubMedCrossRefGoogle Scholar

Literatur

  1. Crowe JE Jr (2004) Human metapneumovirus as a major cause of human respiratory tract disease. Pediatr Infect Dis J 23[Suppl 11]: S215–221PubMedCrossRefGoogle Scholar
  2. Hoogen BG van den, Jong JC de, Groen J et al. (2001) A newly discovered human pneumovirus isolated from young children with respiratory tract disease. Nat Med 7: 719–724PubMedCrossRefGoogle Scholar
  3. König B, König W, Arnold R et al. (2004) Prospective study of human metapneumovirus infection in children less than 3 years of age. J Clin Microbiol 42: 4632–4635PubMedPubMedCentralCrossRefGoogle Scholar
  4. Williams JV, Harris PA, Tollefson SJ et al. (2004) Human metapneumovirus and lower respiratory tract disease in otherwise healthy infants and children. N Engl J Med 350: 443–450PubMedPubMedCentralCrossRefGoogle Scholar

Literatur

  1. Arenz S, Schmitt HJ, Tischer A, Kries R von (2005) Effectiveness of measles vaccination after household exposure during a measles outbreak: a household contact study in Coburg, Bavaria. Pediatr Infect Dis J 24: 697–699PubMedCrossRefGoogle Scholar
  2. Avota E, Avots A, Niewiesk S et al. (2001) Disruption of Akt Kinase activation is important for immunosuppression induced by measles virus. Nat Med 7: 725–731PubMedCrossRefGoogle Scholar
  3. Brodsky AL (1972) Atypical measles: severe illness in recipients of killed measles virus vaccine upon exposure to natural infection. JAMA 222: 1415–1416PubMedCrossRefGoogle Scholar
  4. Coutsoudis A, Broughton M, Coovadia HH (1991) Vitamin A supplementation reduces measles morbidity in young African children: a randomized placebo-controlled, double-blind trial. Am J Clin Nutr 54: 890–895PubMedGoogle Scholar
  5. Forni AL, Schluger NW, Robert RB (1994) Severe measles pneumonitis in adults: evaluation of clinical characteristics and therapy with intravenous ribavirin. Clin Infect Dis 19: 454–462PubMedCrossRefGoogle Scholar
  6. Gendelman KE, Wolinsky JS, Johnson RT et al. (1984) Measles encephalitis: lack of evidence of viral invasion of the central nervous system and quantitative study of the nature of demyelination. Ann Neurol 15: 353–360PubMedCrossRefGoogle Scholar
  7. Markowitz LE, Chandler FW, Roldan EO et al. (1988) Fatal measles pneumonia without rash in a child with AIDS. J Infect Dis 158: 480–483PubMedCrossRefGoogle Scholar
  8. Mustafa MM, Weitman SD, Winick NJ et al. (1993) Subacute measles encephalitis in the young immunocompromised host: report of two cases diagnosed by polymerase chain reaction and treated with ribavirin and review of the literature. Clin Infect Dis 16: 654–660PubMedCrossRefGoogle Scholar
  9. Perry RT, Halsey NA (2004) The clinical significance of measles: a review. J Infect Dis 189[Suppl 1]: S4–16PubMedCrossRefGoogle Scholar

Literatur

  1. Belay ED, Holman RC, Schonberger LB (2005) Creutzfeldt-Jakob disease surveillance and diagnosis. Clin Infect Dis 41: 834–836PubMedCrossRefGoogle Scholar
  2. Bellini WJ, Rota JS, Lowe LE et al. (2005) Subacute sclerosing panencephalitis: more cases of this fatal disease are prevented by measles immunization than was previously recognized. J Infect Dis 192: 1686–1693PubMedCrossRefGoogle Scholar
  3. Brown P (1988) Human growth hormone therapy and Creutzfeldt-Jakob disease: a drama in three acts. Pediatrics 81: 85–92PubMedGoogle Scholar
  4. Domes K (1997) New aspects in the pathogenesis of polyomavirus-induced disease. Adv Virus Res 48: 205–261CrossRefGoogle Scholar
  5. Flechsig E, Weissmann C (2004) The role of PrP in health and disease. Curr Mol Med 4: 337–353PubMedCrossRefGoogle Scholar
  6. Hosoya M, Mori S, Tomoda A et al. (2004) Pharmacokinetics and effects of ribavirin following intraventricular administration for treatment of subacute sclerosing panencephalitis. Antimicrob Agents Chemother 48: 4631–4635PubMedPubMedCentralCrossRefGoogle Scholar
  7. Kretzschmar H (1999) Transmissible spongiforme Enzephalopathien (Prionkrankheiten). In: Hopf HC, Deuschl G, Diener HC (Hrsg) Neurologie in Praxis und Klinik, 2. Aufl. Thieme, StuttgartGoogle Scholar
  8. Langer-Gould A, Atlas SW, Green AJ et al. (2005) Progressive multifocal leukoencephalopathy in a patient treated with natalizumab. N Engl J Med 353: 375–381PubMedCrossRefGoogle Scholar
  9. Martin R, Marquardt P, O’Shea S et al. (1989) Virus specific and autoreactive T cell lines isolated from cerebrospinal fluid of a patient with chronic rubella panencephalitis. J Neuroimmunol 23: 1–10PubMedCrossRefGoogle Scholar
  10. Miller C, Farrington CP, Harbert K (1992) The epidemiology of subacute sclerosing panencephalitis in England and Wales 1970–1989. Int J Epidemiol 21: 998–1006PubMedCrossRefGoogle Scholar
  11. Nasemann JE, Schmid C, Schneider A et al. (1996) Äußere Retinitis als Frühsymptom bei subakut sklerosierender Panenzephalitis (SSPE). Klin Monatsbl Augenheilkd 206: 122–127CrossRefGoogle Scholar
  12. Prusiner SB (1991) Molecular biology of prion diseases. Science 252: 1515–1522PubMedCrossRefGoogle Scholar
  13. Redfearn A, Pennie RA, Mahony JB, Dent PB (1993) Progressive multifocal leukoencephalopathy in a child with immunodeficiency and hyperimmunoglobulinemia M. Pediatr Infect Dis J 12: 399–401PubMedCrossRefGoogle Scholar
  14. Steelman VM (1994) Creutzfeldt-Jakob disease: recommendations for infection control. Am J Infect Control 22: 312–318PubMedCrossRefGoogle Scholar
  15. Vandersteenhoven JJ, Dbaibo G, Boyko OB et al. (1992) Progressive multifocal leukoencephalopathy in pediatric acquired immunodeficiency syndrome. Pediatr Infect Dis J 11: 232–237PubMedCrossRefGoogle Scholar
  16. Will RG, Ironside JW, Zeidler M et al. (1996) A new variant of Creutzfeldt-Jakob disease in the UK. Lancet 347: 921–925PubMedCrossRefGoogle Scholar
  17. Zwiauer K, Forstenpointner E, Popow-Kraupp T et al. (1995) Rapid progressive subacute sclerosing panencephalitis after perinatally acquired measles virus infections. Lancet 345: 1124PubMedCrossRefGoogle Scholar

Literatur

  1. Bayer WL, Sherman FE, Michaels RH et al. (1965) Purpura in congenital and acquired rubella. N Engl J Med 273: 1362–1366PubMedCrossRefGoogle Scholar
  2. Bitzan M (1987) Rubella myelitis and encephalitis in childhood. A report of two cases with magnetic resonance imaging. Neuropediatrics 18: 84–87PubMedCrossRefGoogle Scholar
  3. Dwyer DE, Hueston L, Field PR et al. (1992) Acute encephalitis complicating rubella virus infection. Pediatr Infect Dis J 11: 238–240PubMedCrossRefGoogle Scholar
  4. Enders G, Knotek F (1989) Rubella IgG total antibody avidity and IgG subclass-specific antibody avidity assay and their role in the differentiation between primary rubella and rubella reinfection. Infection 17: 218–226PubMedCrossRefGoogle Scholar
  5. Frenkel LM, Nielsen K, Garakian A et al. (1996) A search for persistent rubella virus infection in persons with chronic symptoms after rubella and rubella immunization and in patients with juvenile rheumatoid arthritis. Clin Infect Dis 22: 287–294PubMedCrossRefGoogle Scholar

Literatur

  1. Casella R, Leibundgut B, Lehmann K, Gasser TC (1997) Mumps orchitis: report of a mini-epidemic. J Urol 158: 2158–2161PubMedCrossRefGoogle Scholar
  2. Hall R, Richards H (1987) Hearing loss due to mumps. Arch Dis Child 62: 189–192PubMedPubMedCentralCrossRefGoogle Scholar
  3. Helmke K, Often A, Willems WR et al. (1986) Islet cell antibodies and the development of diabetes mellitus in relation to mumps infection and mumps vaccination. Diabetologia 29: 30–33PubMedCrossRefGoogle Scholar
  4. Hviid A, Stellfeld M, Wohlfahrt J, Melbye M (2004) Childhood vaccination and type 1 diabetes. N Engl J Med 350: 1398–1404PubMedCrossRefGoogle Scholar
  5. Vaheri A, Julkunen I, Koskiniemi ML (1982) Chronic encephalomyelitis with specific increase in intrathecal mumps antibodies. Lancet 2: 685–688PubMedCrossRefGoogle Scholar
  6. Vandvik B, Norrby E, Steen-Johnson J, Stensvold K (1978) Mumps meningitis: prolonged pleocytosis and occurrence of mumps-specific oligoclonal IgG in the cerebrospinal fluid. Eur Neurol 17: 13–22PubMedCrossRefGoogle Scholar

Literatur

  1. Asano Y, Yoshikawa T, Suga S et al. (1994) Clinical features of infants with primary human herpesvirus 6 infection (exanthem subitum, roseola infantum). Pediatrics 93: 104–108PubMedGoogle Scholar
  2. Caserta MT, McDermott MP, Dewhurst S et al. (2004) Human herpesvirus 6 (HHV6) DNA persistence and reactivation in healthy children. J Pediatr 145: 478–484PubMedCrossRefGoogle Scholar
  3. Hall CB, Caserta MT, Schnabel KC et al (2004). Congenital infections with human herpesvirus 6 (HHV6) and human herpesvirus 7 (HHV7). J Pediatr 145: 472–477PubMedCrossRefGoogle Scholar
  4. Suga S, Suzuki K, Ihira M et al. (2000) Clinical characteristics of febrile convulsions during primary HHV-6 infection. Arch Dis Child 82: 62–66PubMedPubMedCentralCrossRefGoogle Scholar
  5. Tokimasa S, Hara J, Osugi Y et al. (2002) Ganciclovir is effective for prophylaxis and treatment of human herpesvirus-6 in allogeneic stem cell transplantation. Bone Marrow Transplant 29: 595–598PubMedCrossRefGoogle Scholar
  6. Ward KN, Andrews NJ, Verity CM et al. (2005) Human herpesviruses-6 and-7 each cause significant neurological morbidity in Britain and Ireland. Arch Dis Child 90: 619–623PubMedPubMedCentralCrossRefGoogle Scholar
  7. Yoshihara S, Kato R, Inoue T et al (2004) Successful treatment of life-threatening human herpesvirus-6 encephalitis with donor lymphocyte infusion in a patient who had undergone human leukocyte antigen-haploidentical nonmyeloablative stem cell transplantation. Transplantation 77: 835–838PubMedCrossRefGoogle Scholar
  8. Zerr DM, Meier AS, Selke SS et al. (2005) A population-based study of primary human herpesvirus 6 infection. N Engl J Med 352: 768–776PubMedCrossRefGoogle Scholar

Literatur

  1. Boutolleau D, Fernandez C, Andre E et al. (2003) Human herpesvirus (HHV)-6 and HHV-7: two closely related viruses with different infection profiles in stem cell transplantation recipients. J Infect Dis 187: 179–186PubMedCrossRefGoogle Scholar
  2. Broccolo F, Drago F, Careddu AM et al. (2005) Additional evidence that pityriasis rosea is associated with reactivation of human herpesvirus-6 and-7. J Invest Dermatol 124: 1234–1240PubMedCrossRefGoogle Scholar
  3. Caserta MT, Hall CB, Schnabel K et al. (1998) Primary human herpesvirus 7 infection: a comparisation of human herpesvirus 7 and human herpesvirus 6 infections in children. J Pediatr 133: 386–389PubMedCrossRefGoogle Scholar
  4. Chan PK, Li CK, Chik KW et al. (2004) Risk factors and clinical consequences of human herpesvirus 7 infection in paediatric haematopoietic stem cell transplant recipients. J Med Virol 72: 668–674PubMedCrossRefGoogle Scholar
  5. Levy JA (1997) Three new human herpesviruses (HHV6, 7, and 8). Lancet 349: 558–563PubMedCrossRefGoogle Scholar
  6. Takahashi Y, Yamada M, Nakamura J et al. (1997) Transmission of human herpesvirus 7 through multigenerational families in the same household. Pediatr Infect Dis J 16: 975–978PubMedCrossRefGoogle Scholar
  7. Torigoe S, Kumamoto T, Koide W et al. (1995) Clinical manifestations associated with human herpesvirus 7 infection. Arch Dis Child 72: 518–519PubMedPubMedCentralCrossRefGoogle Scholar

Literatur

  1. Bhaduri-Mclntosh S (2005) Human herpesvirus-8: clinical features of an emerging viral pathogen. Pediatr Infect Dis J 24: 81–82CrossRefGoogle Scholar
  2. Camcioglu Y, Picard C, Lacoste V et al. (2004) HHV-8-associated Kaposi sarcoma in a child with IFNgammaRl deficiency. J Pediatr 144: 519–523PubMedCrossRefGoogle Scholar
  3. Chen RL, Lin JC, Wang PJ et al. (2004) Human herpesvirus 8-related childhood mononucleosis: a series of three cases. Pediatr Infect Dis J 23: 671–674PubMedCrossRefGoogle Scholar
  4. Plancoulaine S, Abel L, Beveren M van et al. (2000) Human herpesvirus 8 transmission from mother to child and between siblings in an endemic population. Lancet 356: 1062–1065PubMedCrossRefGoogle Scholar
  5. Wheat WH, Cool CD, Morimoto Y et al. (2005) Possible role of human herpesvirus 8 in the lymphoproliferative disorders in common variable immunodeficiency. J Exp Med 202: 479–484PubMedPubMedCentralCrossRefGoogle Scholar

Literatur

  1. Anderson MJ, Higgins PG, David LR et al. (1985) Experimental parvoviral infection in humans. J Infect Dis 152: 257–265PubMedCrossRefGoogle Scholar
  2. Brown KE, Hibbs JR, Gallinella G et al. (1994) Resistance to parvovirus B19 infection due to lack of virus receptor (erythrocyte P antigen). N Engl J Med 330: 1192–1196PubMedCrossRefGoogle Scholar
  3. Heegaard ED, Hornsleth A (1995) Parvovirus: the expanding spectrum of disease. ActaPaediatr 84: 109–117Google Scholar
  4. Lehmann HW, Landenberg P von, Modrow S (2003) Parvovirus B19 infection and autoimmune disease. Autoimmun Rev 2: 218–223PubMedCrossRefGoogle Scholar
  5. Levy R, Weissman A, Blomberg G, Hagy ZJ (1997) Infection by parvovirus B19 during pregnancy: a review. Obstet Gynecol Surv 52: 254–259PubMedCrossRefGoogle Scholar
  6. Servant A, Laperche S, Lallemand F et al. (2002) Genetic diversity within human erythroviruses: identification of three genotypes. J Virol 76: 9124–9134PubMedPubMedCentralCrossRefGoogle Scholar
  7. Young NS, Brown KE (2004) Parvovirus B19. N Engl J Med 350: 586–597PubMedCrossRefGoogle Scholar

Literatur

  1. Kimura H, Aso K, Kuzushima K et al. (1992) Relapse of herpes simplex encephalitis in children. Pediatrics 89: 891–894PubMedGoogle Scholar
  2. Schuster V, Handrick W, Korn K et al. (2007) Herpes-simplex-Virus-Infektionen. In: Scholz H, Belohradsky BH, Heininger U et al. (Hrsg) Handbuch Infektionen bei Kindern und Jugendlichen, 5. Aufl. DGPI/Futuramed, München (im Druck)Google Scholar
  3. Wagstaff AJ, Faulds D, Goa KL (1994) Aciclovir. A reappraisal of its antiviral activity, pharmacokinetic properties and therapeutic efficacy. Drugs 47: 153–205PubMedCrossRefGoogle Scholar
  4. Kimberlin D (2004) Herpes simplex virus, meningitis and encephalitis in neonates (review). Herpes 11[Suppl2]: 65A–76APubMedGoogle Scholar

Literatur

  1. Enders G, Miller E, Cradock-Watson J et al. (1994) Consequences of varicella and herpes zoster in pregnancy: prospective study of 1739 cases. Lancet 343: 1548–1551PubMedCrossRefGoogle Scholar
  2. Gilden D (2004) Varicella zoster virus and central nervous system syndromes. Herpes 11[Suppl 2]: 89A–94APubMedGoogle Scholar
  3. Leung TF, Chik KW, Li CK et al. (2000) Incidence, risk factors and outcome of varicella-zoster virus infection in children after haematopoietic stem cell transplantation. Bone Marrow Transplant 25: 167–172PubMedCrossRefGoogle Scholar
  4. Lin TY, Huang YC, Ning HC, Hsueh C (1997) Oral acyclovir prophylaxis of varicella after intimate contact. Pediatr Infect Dis J 16: 1162–1165PubMedCrossRefGoogle Scholar
  5. Ozaki T, Kajita Y, Asano Y et al. (1994) Detection of varicella-zoster virus DNA in blood of children with varicella. J Med Virol 44: 263–265PubMedCrossRefGoogle Scholar
  6. Wutzler P, Färber I, Wagenpfeil S et al. (2001) Seroprevalence of varicellazoster virus in the German population. Vaccine 20: 121–124PubMedCrossRefGoogle Scholar

Literatur

  1. Boppana SB, Pass RF, Britt WJ et al. (1992) Symptomatic congenital cytomegalovirus infection: neonatal morbidity and mortality. Pediatr Infect Dis J 11: 93–99PubMedCrossRefGoogle Scholar
  2. Fowler KB, Stagno S, Pass RF et al. (1992) The outcome of congenital cytomegalovirus infection in relation to maternal antibody status. N Engl J Med 326: 663–667PubMedCrossRefGoogle Scholar
  3. Frenkel LM, Capparelli EV, Dankner WM et al. (2000) Oral ganciclovir in children: pharmacokinetics, safety, tolerance, and antiviral effects. The Pediatric AIDS Clinical Trials Group. J Infect Dis 182: 1616–1624PubMedCrossRefGoogle Scholar
  4. Hamprecht K, Maschmann J, Muller D et al. (2004) Cytomegalovirus (CMV) inactivation in breast milk: reassessment of pasteurization and freeze-thawing. Pediatr Res 56: 529–535PubMedCrossRefGoogle Scholar
  5. Kimberlin DW, Lin CY, Sanchez PJ et al. (2003) Effect of ganciclovir therapy on hearing in symptomatic congenital cytomegalovirus disease involving the central nervous system: a randomized, controlled trial. J Pediatr 143: 16–25PubMedCrossRefGoogle Scholar
  6. Meijer E, Boland GJ, Verdonck LF (2003) Prevention of cytomegalovirus disease in recipients of allogeneic stem cell transplants. Clin Microbiol Rev 16: 647–657PubMedPubMedCentralCrossRefGoogle Scholar
  7. Vollmer B, Seibold-Weiger K, Schmitz-Salue C et al (2004) Postnatally acquired cytomegalovirus infection via breast milk: effects on hearing and development in preterm infants. Pediatr Infect Dis J 23: 322–327PubMedCrossRefGoogle Scholar

Literatur

  1. Callan MF, Tan L, Anneis N et.al. (1998) Direct visualization of antigen-specific CD8+ T cells during the primary immune response to Epstein-Barr virus in vivo. J Exp Med 187: 1395–1402PubMedPubMedCentralCrossRefGoogle Scholar
  2. Clave E, Agbalika F, Bajzik V et al. (2004) Epstein-Barr virus (EBV) reactivation in allogeneic stem-cell transplantation: relationship between viral load, EBV-specific T-cell reconstitution and rituximab therapy. Transplantation 77: 76–84PubMedCrossRefGoogle Scholar
  3. Gruhn B, Meerbach A, Hafer R et al. (2003) Pre-emptive therapy with rituximab for prevention of Epstein-Barr virus-associated lymphoproliferative disease after hematopoietic stem cell transplantation. Bone Marrow Transplant 31: 1023–1025PubMedCrossRefGoogle Scholar
  4. Imashuku S, Hibi S, Ohara T et al. (1999) Effective control of Epstein-Barr virus related hemophagocytic lymphohistiocytosis with immunochemotherapy. Histiocyte Society. Blood 93: 1869–1874PubMedGoogle Scholar
  5. Jenson HB (2000) Acute complications of Epstein-Barr virus infectious mononucleosis. Curr Opin Pediatr 12: 263–268PubMedCrossRefGoogle Scholar
  6. McClain KL, Leach CT, Jenson HB et al. (1995) Association of Epstein-Barr virus with leiomyosarcomas in children with AIDS. N Engl J Med 332: 12–18PubMedCrossRefGoogle Scholar
  7. Milone MC, Tsai DE, Hodinka RL et al. (2005) Treatment of primary Epstein-Barr virus infection in patients with X-linked lymphoproliferative disease using B-cell-directed therapy. Blood 105: 994–996PubMedCrossRefGoogle Scholar
  8. Schuster V, Hügle B, Tefs K, Borte M (2002) Atypische Epstein-Barr-Virus (EBV)-Infektionen im Kindes-und Jugendalter. Monatsschr Kinderheilkd 150: 1154–1167CrossRefGoogle Scholar

Literatur

  1. Bielefeldt-Ohmann H (1997) Pathogenesis of dengue virus diseases: missing pieces in the jigsaw. Trends Microbiol 5: 409–413PubMedCrossRefGoogle Scholar
  2. Bitzan M (1997) Hämorrhagische Fieber und Hantavirus-Infektionen. In: Deutsche Gesellschaft für Pädiatrische Infektiologie (Hrsg) Handbuch. Infektionen bei Kindern und Jugendlichen, 2. Aufl. Futuramed, München, S 295–307Google Scholar
  3. Bray M (2005) Pathogenesis of viral hemorrhagic fever. Curr Opinion Immunol 17: 399–403CrossRefGoogle Scholar
  4. Geisbert TW, Jahrling PB (2004) Exotic emerging viral diseases: progress and challenges. Nat Med 10[Suppl 12]: S110–121PubMedCrossRefGoogle Scholar
  5. Kautner I, Robinson MJ, Kuhnle U (1997) Dengue virus infection: epidemiology, pathogenesis, clinical presentation, diagnosis and prevention. J Pediatr 131: 516–524PubMedCrossRefGoogle Scholar
  6. Mackenzie JS, Gubler DJ, Petersen LR (2004) Emerging flaviviruses: the spread and resurgence of Japanese encephalitis, West Nile and dengue viruses. Nat Med 10[Suppl 12]: S98–109PubMedCrossRefGoogle Scholar
  7. Monath TP, Cetron MS (2002) Prevention of yellow fever in persons traveling to the tropics. Clin Infect Dis 34: 1369–1378PubMedCrossRefGoogle Scholar
  8. Pigott DC (2005) Hemorrhagic fever viruses. Crit Care Clin 21: 765–783PubMedCrossRefGoogle Scholar
  9. Robertson SE, Hull BP, Tomori O et al. (1996) Yellow fever: a decade of reemergence. JAMA 276: 1157–1162PubMedCrossRefGoogle Scholar
  10. Tsai TF (1997a) Ebola and Marburg viruses. In: Long SS, Pickering LK, Prober CG (eds) Pediatric infectious diseases. Churchill Livingstone, New York, pp 1274–1275Google Scholar
  11. Tsai TF (1997b) Lymphocytic choriomeningitis virus, Lassa fever virus, and other arenaviruses. In: Long SS, Pickering LK, Prober CG (eds) Pediatric infectious diseases. Churchill Livingstone, New York, pp 1275–1278Google Scholar
  12. Willis BA, Nguyen MD, Ha TL et al. (2005) Comparison of three fluid solutions for resuscitation in dengue shock syndrome. N Engl J Med 353: 877–889CrossRefGoogle Scholar

Literatur

  1. Bear GM (ed) (1991) The natural history of rabies, 2nd edn. CRC, Boca Raton/FLGoogle Scholar
  2. Roß RS, Kruppenbacher JP, Schiller WG et al. (1997) Menschliche Tollwuterkrankung in Deutschland. Dtsch Arztebl 94: 29–32Google Scholar

Copyright information

© Springer Medizin Verlag Heidelberg 2007

Authors and Affiliations

  • J. Forster
    • 1
  • V. Schuster
    • 2
  • H. W. Kreth
    • 3
  • D. Nadal
    • 4
  • H. -J. Schmitt
    • 5
  1. 1.St. JosefskrankenhausFreiburgGermany
  2. 2.Universitätsklinik und Poliklinik für Kinder und JugendlicheLeipzigGermany
  3. 3.Univ.-KinderklinikWürzburgGermany
  4. 4.Abt. InfektiologieUniv.-KinderklinikZürichSchweiz
  5. 5.Univ.-KinderklinikMainzGermany

Personalised recommendations