Advertisement

Semantic Tracking in Peer-to-Peer Topic Maps Management

  • Asanee Kawtrakul
  • Chaiyakorn Yingsaeree
  • Frederic Andres
Conference paper
  • 329 Downloads
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4777)

Abstract

This paper presents a collaborative semantic tracking framework based on topic maps which aims to integrate and organize the data/information resources that spread throughout the Internet in the manner that makes them useful for tracking events such as natural disaster, and disease dispersion. We present the architecture we defined in order to support highly relevant semantic management and to provide adaptive services such as statistical information extraction technique for document summarization. In addition, this paper also carries out a case study on disease dispersion domain using the proposed framework.

Keywords

Avian Influenza Natural Language Processing Information Extraction Distribute Hash Table Entity Recognition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Kongwan, A., Kawtrakul, A.: Know-what: A Development of Object Property Extraction from Thai Texts and Query System. In: Proceedings of SNLP-2005, Bangkok, Thailand, pp. 157–162 (2005), ISBN: 974-9942-52-3Google Scholar
  2. 2.
    Berger, A.L., Pietra, S.-A.D., Pietra, V.-J.D.: A maximum entropy approach to natural language processing. Computational Linguistics 22, 39–71 (1996)Google Scholar
  3. 3.
    Biswas, D., Kim, I.: Atomicity for P2P based XML Repositories. In: ICDE 2007 (2007)Google Scholar
  4. 4.
    Bonifacio, M., Bouquet, P., Cuel, R.: The Role of Classification(s) in Distributed Knowledge Management. In: Proc. of KES, Podere d’Ombriano, Italy (September 16-18, 2002)Google Scholar
  5. 5.
    Biezunski, M., Bryan, M., Newcomb, S.: ISO/IEC JTC1/SC34. (May 22, 2002), Available at http://www1.y12.doe.gov/capabilities/sgml/sc34/document/0322.htm
  6. 6.
    Chanlekha, H., Kawtrakul, A.: Thai Named Entity Extraction by incorporating Maximum Entropy Model with Simple Heuristic Information. In: Su, K.-Y., Tsujii, J., Lee, J.-H., Kwong, O.Y. (eds.) IJCNLP 2004. LNCS (LNAI), vol. 3248, pp. 49–55. Springer, Heidelberg (2005)Google Scholar
  7. 7.
    Chareonsuk, J., Sukvakree, Y., Kawtrakul, A.: Elementary Discourse unit Segmentation for Thai using Discourse Cue and Syntactic Information. In: Proceedings of SNLP. Bangkok, Thailand, pp. 85–90 (2005), ISBN: 974-9942-52-3Google Scholar
  8. 8.
    Damianos, L., Bayer, S., Chisholm, M.A., Henderson, J., Hirschman, L., Morgan, W., Ubaldino, M., Zarrella, J.: MiTAP for SARS detection. In: Proceedings of the Conference on Human Language Technology. Boston, USA, pp. 241–244 (2004)Google Scholar
  9. 9.
    Dean, M., Connolly, D., van Harmelen, F., Hendler, J., Horrocks, I., McGuinness, D.L., Patel-Schneider, P.F., Stein, L.A.: OWL Web Ontology Language Reference. W3C Recommendation (February 10, 2004), Available at http://www.w3.org/TR/owl-ref/
  10. 10.
    Fontijn, W., Boncz, P.A.: AmbientDB: P2P Data Management Middleware for Ambient Intelligence. In: Proceedings. of PerCom Workshops, USA, pp. 203–207 (March 14-17, 2004)Google Scholar
  11. 11.
    Garshol, L.M.: Living with Topic Maps and RDF (May 2003), Available at http://www.idealliance.org/papers/dx_xmle03/papers/02-03-06/02-03-06.html
  12. 12.
    Grosz, B., Joshi, A., Weinstein, S.: Centering: A Framework for Modeling the Local Coherence of Discourse. Computational Linguistics 21, 203–225 (1995)Google Scholar
  13. 13.
    Güting, R.H.: Gral: an extensible relational database system for geometric applications. In: Proceedings of the 15th international Conference on Very Large Data Bases. Very Large Data Bases, Amsterdam, The Netherlands, pp. 33–44. Morgan Kaufmann Publishers, San Francisco, CA (1989)Google Scholar
  14. 14.
    Güting, R.H.: Second-order signature: a tool for specifying data models, query processing, and optimization. In: Buneman, P., Jajodia, S. (eds.) SIGMOD 1993. Proceedings of the 1993 ACM SIGMOD international Conference on Management of Data, Washington, D.C., United States, May 25-28, 1993, pp. 277–286. ACM Press, New York (1993), http://doi.acm.org/10.1145/170035.170079 CrossRefGoogle Scholar
  15. 15.
    Kawtrakul, A., Permpool, T., Yingsaeree, C., Andres, F.: A Framework of NLP based Information Tracking and related Knowledge Organizing with Topic Maps. In: Kedad, Z., Lammari, N., Métais, E., Meziane, F., Rezgui, Y. (eds.) NLDB 2007. LNCS, vol. 4592, pp. 272–283. Springer, Heidelberg (2007)Google Scholar
  16. 16.
    Kawtrakul, A., Suktarachan, M., Imsombut, A.: Automatic Thai Ontology Construction and Maintenance System. In: Proceedings of Ontolex Workshop on LREC, pp. 68–74 (2004)Google Scholar
  17. 17.
    Kawtrakul, A., Yingsaeree, C.: A Unified Framework for Automatic Metadata Extraction from Electronic Document. In: Proceedings of The International Advanced Digital Library Conference. Nagoya, Japan (2005)Google Scholar
  18. 18.
    Kongwan, A., Kawtrakul, A.: Know-what: A Development of Object Property Extraction from Thai Texts and Query System. In: Proceedings of SNLP-2005. Bangkok, Thailand, pp. 157–162 (2005), ISBN: 974-9942-52-3Google Scholar
  19. 19.
    Kushmerick, N., Johnston, E., McGuinness, S.: Information extraction by text classification. In: Proceedings of IJCAI-2001 Workshop on Adaptive Text Extraction and Mining (2001)Google Scholar
  20. 20.
    Li, B., Li, W., Lu, Q., Wu, M.: Profile-based event tracking. In: SIGIR 2005 Proceedings of the 28th Annual international ACM SIGIR Conference on Research and Development in information Retrieval, Salvador, Brazil, August 15-19, 2005, pp. 631–632. ACM Press, New York (2005)CrossRefGoogle Scholar
  21. 21.
    Chan, M.T., Hoogs, A., Sun, Z., Schmiederer, J., Bhotika, R., Doretto, G.: Event Recognition with Fragmented Object Tracks, icpr. In: Proceedings of 18th International Conference on Pattern Recognition (ICPR 2006), pp. 412–416 (2006)Google Scholar
  22. 22.
    Naito, M., Andres, F.: Application Framework Based on Topic Maps. In: Maicher, L., Park, J. (eds.) TMRA 2005. LNCS (LNAI), vol. 3873, pp. 42–52. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  23. 23.
    Pan, J.Z.: A Flexible Ontology Reasoning Architecture for the Semantic Web. IEEE Transactions on Knowledge and Data Engineering 19(2), 246–260 (2007)CrossRefGoogle Scholar
  24. 24.
    Perich, F., Joshi, A., Finin, T.W., Yesha, Y.: On Data Management in Pervasive Computing Environments. Trans. Knowl. Data Eng. 16(5), 621–634 (2004)CrossRefGoogle Scholar
  25. 25.
    Pinto, H.S., Staab, S., Sure, S., Tempich, C.: OntoEdit Empowering SWAP: a Case Study in Supporting DIstributed, Loosely-Controlled and evolvInG Engineering of oNTologies (DILIGENT). In: Bussler, C.J., Davies, J., Fensel, D., Studer, R. (eds.) ESWS 2004. LNCS, vol. 3053, pp. 10–12. Springer, Heidelberg (2004)Google Scholar
  26. 26.
    Pitoura, E., Abiteboul, S., Pfoser, D., Samaras, G., Vazirgiannis, M.: DBGlobe: a service-oriented P2P system for global computing. SIGMOD Rec. 32(3), 77–82 (2003)CrossRefGoogle Scholar
  27. 27.
    Rajbhandari, S., Andres, F., Naito, M., Wuwongse, V.: Topic Management in Spatial-Temporal Multimedia Blog. In: the 1st IEEE International Conference on Digital Information Management (ICDIM 2006), Bangalore, India, pp. 81–88 (December 6-8, 2006), ISBN:1-4244-0682-XGoogle Scholar
  28. 28.
    Satayamas, V., Thumkanon, C., Kawtrakul, A.: Bootstrap Cleaning and Quality Control for Thai Tree Bank Construction. In: Proceedings of NCSEC-2005. Bangkok Thailand, pp. 849–860 (2005), ISBN: 974-677-541-3Google Scholar
  29. 29.
    Shneiderman, B.: The eyes have it: a task by data type taxonomy for information visualizations. In: Proceedings of 1996 IEEE Visual Languages, Boulder, CO, pp. 336–343 (1996)Google Scholar
  30. 30.
    Suzuki, J., Sasaki, Y., Maeda, E.: Kernels for structured natural language data. In: Proceeding of NIPS 2003 (2003)Google Scholar
  31. 31.
    Sudprasert, S., Kawtrakul, A.: Thai Word Segmentation based on Global and Local Unsupervised Learning. In: Proceedings of NCSEC-2003, Chonburi, Thailand (2003) ISBN: 974-3826-04-1Google Scholar
  32. 32.
    The AOS project, FAO, http://www.fao.org/aims/aos.jsp
  33. 33.
    Thamvijit, D., Chanlekha, H., Sirigayon, C., Permpool, T., Kawtrakul, A.: Know-who: Person Information from Web Mining. In: Proceedings of NCSEC. Bangkok, Thailand, pp. 849–860 (2005), ISBN: 974-677-541-3Google Scholar
  34. 34.
    Topic Map Query Language (TMQL), http://www.isotopicmaps.org/tmql/
  35. 35.
    Vargas-Vera, M., Celjuska, D.: Event Recognition on News Stories and Semi-Automatic Population of an Ontology, wi. In: IEEE/WIC/ACM International Conference on Web Intelligence (WI 2004), pp. 615–618 (2004)Google Scholar
  36. 36.
    Xiao, R., Tang, S., Li, L., Fang, L., Xu, Y., Chen, W., Xu, Y.: Using Categorial Context-SHOIQ(D) DL to Integrate Context-aware Web Ontology MetaData. In: Proceedings of Second International Conference on Semantics, Knowledge, and Grid (SKG 2006) (2006)Google Scholar
  37. 37.
    Yangarber, R., Jokipii, L., Rauramo, A., Huttunen, S.: Information Extraction from Epidemiological Reports. In: Proceedings of HLT/EMNLP-2005. Canada (2005)Google Scholar
  38. 38.
    Zavrel, J., Berck, P., Lavrijssen, W.: Information extraction by text classification: Corpus mining for features. In: Proceedings of the workshop Information Extraction meets Corpus Linguistics. Athens, Greece (2000)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Asanee Kawtrakul
    • 1
  • Chaiyakorn Yingsaeree
    • 1
  • Frederic Andres
    • 2
  1. 1.NAiST Research Laboratory, Kasetsart University, BangkokThailand
  2. 2.National Institute of Informatics, TokyoJapan

Personalised recommendations