Advertisement

Execution Optimization for Composite Services Through Multiple Engines

  • Wubin Li
  • Zhuofeng Zhao
  • Jun Fang
  • Kun Chen
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4749)

Abstract

Web services are rapidly emerging as a popular standard for sharing data and functionality among heterogeneous systems. We propose a general purpose Web Service Management System (WSMSME) that enables executing composite services through multiple engines. This paper tackles a first basic WSMSME problem: execution optimization for composite services through multiple engines. Our main result comprises two dynamic programming algorithms. One helps minimizes the number of engines required to complete a composite service when computational capability of each engine is relatively changeless; the other optimally minimizes the heaviest load of engines by segmenting a pipelined execution plan into sub-sequences before they are dispatched and executed; Both of the two can obtain optimal solutions in polynomial time. Experiments with an initial prototype indicate that our algorithms can lead to significant performance improvement over more straightforward techniques.

Keywords

Web Services Execution Optimization Multiple Engines Dynamic Programming 

References

  1. 1.
    Web services (2002), http://www.w3.org/2002/ws
  2. 2.
    Florescu, D., Grunhagen, A., Kossmann, D.: XL: A platform for web services. In: CIDR. Proc. First Biennial Conf. on Innovative Data Systems Research (2003)Google Scholar
  3. 3.
    Ouzzani, M., Bouguettaya, A.: Efficient access to web services. IEEE Internet Computing 8(2), 34–44 (2004)CrossRefGoogle Scholar
  4. 4.
    DeWitt, D., et al.: The Gamma Database Machine Project. IEEE Trans. on Knowledge and Data Engineering 2(1), 44–62 (1990)CrossRefGoogle Scholar
  5. 5.
    Hong, W., Stonebraker, M.: Optimization of parallel query execution plans in XPRS. In: Proceedings of the First Intl.Conf. on Parallel and Distributed Information Systems, pp. 218–225 (1991)Google Scholar
  6. 6.
    Ozsu, M., Valduriez, P.: Principles of distributed database systems. Prentice-Hall, Inc, Englewood Cliffs (1991)Google Scholar
  7. 7.
    Florescu, D., Grunhagen, A., Kossmann, D.: XL: A platform for web services. In: CIDR. Proc. First Biennial Conf. on Innovative Data Systems Research (2003)Google Scholar
  8. 8.
    Ouzzani, M., Bouguettaya, A.: Efficient access to web services. IEEE Internet Computing 8(2), 34–44 (2004)CrossRefGoogle Scholar
  9. 9.
    BPEL4WS: Business Process Execution Language for Web Services, ftp://www6.software.ibm.com/software/developer/library/wsbpel.pdf
  10. 10.
  11. 11.
  12. 12.
    Russell, N., ter Hofstede, A.H.M.: WORKFLOW CONTROL-FLOW PATTERNS-A Revised View, http://workflowpatterns.com/documentation/documents/BPM-06-22.pdf
  13. 13.
    Srivastava, U., Munagala, K., Widom, J., Motwani, R.: Query optimization over web services. In: Proceedings of the 32nd international conference on Very large data bases, vol. 32, pp. 355–366 (2006)Google Scholar
  14. 14.
  15. 15.
    Web Services Description Language, http://www.w3.org/TR/wsdl
  16. 16.
    Casati, F., Dayal, U. (eds.): Special Issue on Web Services, IEEE Data Eng. Bull., vol. 25(4) (2002)Google Scholar
  17. 17.
    Garcia-Molina, H., et al.: The TSIMMIS approach to mediation: Data models and languages. Journal of Intelligent Information Systems 8(2), 117–132 (1997)CrossRefGoogle Scholar
  18. 18.
    Miller, R. (ed.): Special Issue on Integration Management, IEEE Data Eng. Bull., vol. 25(3) (2002)Google Scholar
  19. 19.
    Roth, M., Schwarz, P.: Don’t Scrap It, Wrap It! A Wrapper Architecture for Legacy Data Sources. In: Proc. of the 1997 Intl. Conf. on Very Large Data Bases, pp. 266–275 (1997)Google Scholar
  20. 20.
    Viglas, S., Naughton, J.F., Burger, J.: Maximizing the output rate of multi-join queries over streaming information sources. In: Proc. of the 2003 Intl. Conf. on Very Large Data Bases, pp. 285–296 (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Wubin Li
    • 1
  • Zhuofeng Zhao
    • 1
  • Jun Fang
    • 1
  • Kun Chen
    • 2
  1. 1.Research Centre for Grid and Service Computing, Institute of Computing Technology, Chinese Academy of Sciences, P.O.Box 2704, 100080, BeijingChina
  2. 2.Department of Computer Science and Technology, Shandong University of Science and Technology, Qingdao 266510China

Personalised recommendations