Stochastic COWS

  • Davide Prandi
  • Paola Quaglia
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4749)


A stochastic extension of COWS is presented. First the formalism is given an operational semantics leading to finitely branching transition systems. Then its syntax and semantics are enriched along the lines of Markovian extensions of process calculi. This allows addressing quantitative reasoning about the behaviour of the specified web services. For instance, a simple case study shows that services can be analyzed using the PRISM probabilistic model checker.


Operational Semantic Parallel Composition Exit Rate Quantitative Reasoning Process Calculus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Aziz, A., Sanwal, K., Singhal, V., Brayton, R.K.: Model-checking continuous-time markov chains. ACM TOCL 1(1), 162–170 (2000)CrossRefMathSciNetGoogle Scholar
  2. 2.
    Bruni, R., Melgratti, H.C., Montanari, U.: Theoretical foundations for compensations in flow composition languages. In: POPL 2005, pp. 209–220 (2005)Google Scholar
  3. 3.
    Bruni, R., Melgratti, H.C., Tuosto, E.: Translating Orc Features into Petri Nets and the Join Calculus. In: Bravetti, M., Núñez, M., Zavattaro, G. (eds.) WS-FM 2006. LNCS, vol. 4184, pp. 123–137. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  4. 4.
    Degano, P., Priami, C.: Enhanced operational semantics. ACM CS 33(2), 135–176 (2001)CrossRefMathSciNetGoogle Scholar
  5. 5.
    Gilmore, S.T., Tribastone, M.: Evaluating the scalability of a web service-based distributed e-learning and course management system. In: Bravetti, M., Núñez, M., Zavattaro, G. (eds.) WS-FM 2006. LNCS, vol. 4184, pp. 214–226. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  6. 6.
    Guidi, C., Lucchi, R., Gorrieri, R., Busi, N., Zavattaro, G.: A Calculus for Service Oriented Computing. In: Dan, A., Lamersdorf, W. (eds.) ICSOC 2006. LNCS, vol. 4294, Springer, Heidelberg (2006)CrossRefGoogle Scholar
  7. 7.
    Hillston, J.: A Compositional Approach to Performance Modelling. In: CUP (1996)Google Scholar
  8. 8.
    Lapadula, A., Pugliese, R., Tiezzi, F.: Calculus for Orchestration of Web Services. In: Proc. ESOP 2007. LNCS, vol. 4421, pp. 33–47. Springer, Heidelberg (2007) (full version available at), Google Scholar
  9. 9.
    Milner, R.: Communicating and mobile systems: the π-calculus. In: CUP (1999)Google Scholar
  10. 10.
    Misra, J., Cook, W.R.: Computation Orchestration: A Basis for Wide-area Computing. SoSyM 6(1), 83–110 (2007)CrossRefGoogle Scholar
  11. 11.
  12. 12.
    Pottier, F.: An Overview of Cαml. ENTCS 148(2), 27–52 (2006)Google Scholar
  13. 13.
    Priami, C.: Stochastic π-calculus. The Computer Journal 38(7), 578–589 (1995)CrossRefGoogle Scholar
  14. 14.
  15. 15.
    Quaglia, P.: Explicit substitutions for pi-congruences. TCS 269(1-2), 83–134 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Sangiorgi, D., Walker, D.: The π-calculus: a Theory of Mobile Processes. In: CUP (2001)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Davide Prandi
    • 1
  • Paola Quaglia
    • 1
  1. 1.Dipartimento di Informatica e Telecomunicazioni, Università di TrentoItaly

Personalised recommendations