Advertisement

Strategies of Gene Transfer and Silencing, and Technical Considerations

  • Kristoffer Valerie
  • Paul R. Graves
Chapter
  • 1k Downloads
Part of the Medical Radiology book series (MEDRAD)

Abstract

Cancer gene therapy is a relatively new modality that might ultimately revolutionize oncology. The basic principle is to alter the tumor genetically to enhance more traditional chemo- and radiation therapy schema. The last decade has seen tremendous progress and development of new technologies in the areas of vector delivery, tumor targeting, and numerous clever ways to increase tumor killing, including early attempts to modulate tumor gene expression by RNA interference. In recent years, attempts to image affected cells have also been part of these efforts. Many studies have proceeded to the preclinical stage and a fair number to early clinical testing with some showing encouraging results. However, real impact on patient survival remains to be seen. One major problem still to be overcome is the quantitative delivery of the vector into the tumor mass. The next decade is expected to resolve many of these technical issues and improve the treatment of patients. This chapter will discuss new technologies and provide a brief overview of the field.

Keywords

Gene Therapy Severe Acute Respiratory Syndrome Therapeutic Gene Severe Acute Respiratory Syndrome Suicide Gene 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Alemany R (2007) Cancer selective adenoviruses. Mol Aspects Med 28:42–58PubMedCrossRefGoogle Scholar
  2. Ambros V (2004) The functions of animal microRNAs. Nature 431:350–355PubMedCrossRefGoogle Scholar
  3. Barton KN, Freytag SO, Nurushev T, Yoo S, Lu M, Yin FF, Li S, Movsas B, Kim JH, Brown SL (2007) A model for optimizing adenoviral delivery in human cancer gene therapy trials. Hum Gene Ther 18:562–572PubMedCrossRefGoogle Scholar
  4. Bischoff JR, Kirn DH, Williams A, Heise C, Horn S, Muna M, Ng L, Nye JA, Sampson-Johannes A, Fattaey A, McCormick, F (1996) An adenovirus mutant that replicates selectively in p53-deficient human tumor cells. Science 274:373–376PubMedCrossRefGoogle Scholar
  5. Bumcrot D, Manoharan M, Koteliansky V, Sah DW (2006) RNAi therapeutics: a potential new class of pharmaceutical drugs. Nat Chem Biol 2:711–719PubMedCrossRefGoogle Scholar
  6. Chang KJ, Lee JG, Holcombe RF, Kuo J, Muthusamy R, Wu ML (2008) Endoscopic ultrasound delivery of an antitumor agent to treat a case of pancreatic cancer. Nat Clin Pract Gastroenterol Hepatol 5:107–111PubMedCrossRefGoogle Scholar
  7. Chiang CS, Hong JH, Wu YC, McBride WH, Dougherty GJ (2000) Combining radiation therapy with interleukin-3 gene immunotherapy. Cancer Gene Ther 7:1172–1178PubMedCrossRefGoogle Scholar
  8. Culver KW, Ram Z, Wallbridge S, Ishii H, Oldfield EH, Blaese RM (1992) In vivo gene transfer with retroviral vector-producer cells for treatment of experimental brain tumors. [See comments.] Science 256:1550–1552PubMedCrossRefGoogle Scholar
  9. Culver KW, Van Gilder J, Link CJ, Carlstrom T, Buroker T, Yuh W, Koch K, Schabold K, Doornbas S, Wetjen B et al (1994) Gene therapy for the treatment of malignant brain tumors with in vivo tumor transduction with the herpes simplex thymidine kinase gene/ganciclovir system. Hum Gene Ther 5:343–379PubMedCrossRefGoogle Scholar
  10. Cunningham CC, Chada S, Merritt JA, Tong A, Senzer N, Zhang Y, Mhashilkar A, Parker K, Vukelja S, Richards D et al (2005) Clinical and local biological effects of an intratumoral injection of mda-7 (IL24; INGN 241) in patients with advanced carcinoma: a phase I study. Mol Ther 11:149–159PubMedCrossRefGoogle Scholar
  11. Dykxhoorn DM, Lieberman J (2006) Knocking down disease with siRNAs. Cell 126:231–235PubMedCrossRefGoogle Scholar
  12. Fisher PB (2005) Is mda-7/IL-24 a magic bullet for cancer? Cancer Res 65:0128–10138CrossRefGoogle Scholar
  13. Freytag SO, Kim JH, Brown SL, Barton K, Lu M, Chung M (2004) Gene therapy strategies to improve the effectiveness of cancer radiotherapy. Expert Opin Biol Ther 4:1757–1770PubMedCrossRefGoogle Scholar
  14. Freytag SO, Barton KN, Brown SL, Narra V, Zhang Y, Tyson D, Nall C, Lu M, Ajlouni M, Movsas B, Kim JH (2007a) Replication-competent adenovirus-mediated suicide gene therapy with radiation in a preclinical model of pancreatic cancer. Mol Ther 15:1600–1606CrossRefGoogle Scholar
  15. Freytag SO, Movsas B, Aref I, Stricker H, Peabody J, Pegg J, Zhang Y, Barton KN, Brown SL, Lu M et al (2007b) Phase I trial of replication-competent adenovirus-mediated suicide gene therapy combined with IMRT for prostate cancer. Mol Ther 15:1016–1023CrossRefGoogle Scholar
  16. Glasgow JN, Everts M, Curiel DT (2006) Transductional targeting of adenovirus vectors for gene therapy. Cancer Gene Ther 13:830–844PubMedCrossRefGoogle Scholar
  17. Hammond SM (2006) MicroRNAs as oncogenes. Curr Opin Genet Dev 16:4–9PubMedCrossRefGoogle Scholar
  18. Hutvagner G, Simard MJ (2008) Argonaute proteins: key players in RNA silencing. Nat Rev Mol Cell Biol 9:22–32PubMedCrossRefGoogle Scholar
  19. Inoue S, Shanker M, Miyahara R, Gopalan B, Patel S, Oida Y, Branch CD, Munshi A, Meyn RE, Andreeff M et al (2006) MDA-7/IL-24-based cancer gene therapy: translation from the laboratory to the clinic. Curr Gene Ther 6:73–91PubMedCrossRefGoogle Scholar
  20. Kievit E, Bershad E, Ng E, Sethna P, Dev I, Lawrence TS, Rehemtulla A (1999) Superiority of yeast over bacterial cytosine deaminase for enzyme/prodrug gene therapy in colon cancer xenografts. Cancer Res 59:1417–1421PubMedGoogle Scholar
  21. Kim DH, Rossi JJ (2007) Strategies for silencing human disease using RNA interference. Nat Rev Genet 8:173–184PubMedCrossRefGoogle Scholar
  22. Kim VN (2005) MicroRNA biogenesis: coordinated cropping and dicing. Nat Rev Mol Cell Biol 6:376–385PubMedCrossRefGoogle Scholar
  23. Kufe D, Weichselbaum R (2003) Radiation therapy: activation for gene transcription and the development of genetic radiotherapy-therapeutic strategies in oncology. Cancer Biol Ther 2:326–329PubMedGoogle Scholar
  24. Li BJ, Tang Q, Cheng D, Qin C, Xie FY, Wei Q, Xu J, Liu Y, Zheng BJ, Woodle MC et al (2005a) Using siRNA in prophylactic and therapeutic regimens against SARS coronavirus in Rhesus macaque. Nat Med 11:944–951Google Scholar
  25. Li C, Bowles DE, van Dyke T, Samulski RJ (2005b) Adeno-associated virus vectors: potential applications for cancer gene therapy. Cancer Gene Ther 12:913–925CrossRefGoogle Scholar
  26. Liu X, Fortin K, Mourelatos Z (2008) MicroRNAs: biogenesis and molecular functions. Brain Pathol 18:113–121PubMedCrossRefGoogle Scholar
  27. Lu Y, Dang H, Middleton B, Zhang Z, Washburn L, Stout DB, Campbell-Thompson M, Atkinson MA, Phelps M, Gambhir SS et al (2006) Noninvasive imaging of islet grafts using positron-emission tomography. Proc Natl Acad Sci USA 103:11294–11299PubMedCrossRefGoogle Scholar
  28. Martin SE, Caplen NJ (2007) Applications of RNA interference in mammalian systems. Annu Rev Genomics Hum Genet 8:81–108PubMedCrossRefGoogle Scholar
  29. Mattes J, Yang M, Foster PS (2007) Regulation of microRNA by antagomirs: a new class of pharmacological antagonists for the specific regulation of gene function? Am J Respir Cell Mol Biol 36:8–12PubMedCrossRefGoogle Scholar
  30. Mundt AJ, Vijayakumar S, Nemunaitis J, Sandler A, Schwartz H, Hanna N, Peabody T, Senzer N, Chu K, Rasmussen CS et al (2004) A phase I trial of TNFerade biologic in patients with soft tissue sarcoma in the extremities. Clin Cancer Res 10:5747–5753PubMedCrossRefGoogle Scholar
  31. Ng P, Graham FL (2002) Construction of first-generation adenoviral vectors. Methods Mol Med 69:389–414PubMedGoogle Scholar
  32. Ng P, Parks RJ, Graham FL (2002) Preparation of helper-dependent adenoviral vectors. Methods Mol Med 69:371–388PubMedGoogle Scholar
  33. Nie S, Xing Y, Kim GJ, Simons JW (2007) Nanotechnology applications in cancer. Annu Rev Biomed Eng 9:257–288PubMedCrossRefGoogle Scholar
  34. Putral LN, Gu W, McMillan NA (2006) RNA interference for the treatment of cancer. Drug News Perspect 19:317–324PubMedCrossRefGoogle Scholar
  35. Rosenberg E, Hawkins W, Holmes M, Amir C, Schmidt-Ullrich RK, Lin PS, Valerie K (2002) Radiosensitization of human glioma cells in vitro and in vivo with acyclovir and mutant HSV-TK75 expressed from adenovirus. Int J Radiat Oncol Biol Phys 52:831–836PubMedCrossRefGoogle Scholar
  36. Roth JA (2006) Adenovirus p53 gene therapy. Expert Opin Biol Ther 6:55–61PubMedCrossRefGoogle Scholar
  37. Senzer N, Mani S, Rosemurgy A, Nemunaitis J, Cunningham C, Guha C, Bayol N, Gillen M, Chu K, Rasmussen C et al (2004) TNFerade biologic, an adenovector with a radiation-inducible promoter, carrying the human tumor necrosis factor alpha gene: a phase I study in patients with solid tumors. J Clin Oncol 22:592–601PubMedCrossRefGoogle Scholar
  38. Siddiqui F, Barton KN, Stricker HJ, Steyn PF, Larue SM, Karvelis KC, Sparks RB, Kim JH, Brown SL, Freytag SO (2007) Design considerations for incorporating sodium iodide symporter reporter gene imaging into prostate cancer gene therapy trials. Hum Gene Ther 18:312–322PubMedCrossRefGoogle Scholar
  39. Ternovoi VV, Curiel DT, Smith BF, Siegal GP (2006) Adenovirus-mediated p53 tumor suppressor gene therapy of osteosarcoma. Lab Invest 86:748–766PubMedGoogle Scholar
  40. Tong AW, Nemunaitis J, Su, D, Zhang Y, Cunningham C, Senzer N, Netto G, Rich D, Mhashilkar A, Parker K et al (2005) Intratumoral injection of INGN 241, a nonreplicating adenovector expressing the melanoma-differentiation associated gene-7 (mda-7/IL24): biologic outcome in advanced cancer patients. Mol Ther 11:160–172PubMedCrossRefGoogle Scholar
  41. Trinh QT, Austin EA, Murray DM, Knick VC, Huber BE (1995) Enzyme/prodrug gene therapy: comparison of cytosine deaminase/5-fluorocytosine versus thymidine kinase/ganciclovir enzyme/prodrug systems in a human colorectal carcinoma cell line. Cancer Res 55:4808–4812PubMedGoogle Scholar
  42. Tsai CH, Hong JH, Hsieh KF, Hsiao HW, Chuang WL, Lee CC, McBride WH, Chiang CS (2006) Tetracycline-regulated intratumoral expression of interleukin-3 enhances the efficacy of radiation therapy for murine prostate cancer. Cancer Gene Ther 13:1082–1092PubMedCrossRefGoogle Scholar
  43. Valerie K (1999) Viral vectors for gene therapy. In: Wu-Pong S, Rojanasakul Y (eds) Biopharmaceutical drug design and development. Humana, Totowa, New Jersey, pp 69–105Google Scholar
  44. Valerie K, Hawkins W, Farnsworth J, Schmidt-Ullrich R, Lin PS, Amir C, Feden J (2001) Substantially improved in vivo radiosensitization of rat glioma with mutant HSV-TK and acyclovir. Cancer Gene Ther 8:3–8PubMedCrossRefGoogle Scholar
  45. Zamore PD, Haley B (2005) Ribo-gnome: the big world of small RNAs. Science 309:1519–1524PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Kristoffer Valerie
    • 1
  • Paul R. Graves
    • 1
  1. 1.Department of Radiation OncologyVirginia Commonwealth UniversityRichmondUSA

Personalised recommendations