Skip to main content

Skew Detection Algorithm for Form Document Based on Elongate Feature

  • Conference paper
Energy Minimization Methods in Computer Vision and Pattern Recognition (EMMCVPR 2007)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 4679))

  • 1401 Accesses

Abstract

One new and efficient skew detection algorithm is proposed for form documents according to the feature that the horizontal line has the same skew with the form. This algorithm includes the following steps: Firstly, all horizontal connected regions, including horizontal straight-lines, are extracted from the form document by directional region growing method presented in this paper; Secondly, the optimal line is selected from all horizontal connected regions based on the elongate of connected region; Thirdly, all the pixels belonging to the optimal line are considered to calculate the line parameters with linear least-square theory. The skew angle of the optimal line is just the form skew angle. One elongate function is defined in this paper which described the elongate feature correctly for the band-like connected region. The experiment results show that the form skew angle can be detected accurately, and this skew detection algorithm is fast and robust.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hinds, S.C., Fisher, J.L., D’Amato, D.P.: A document skew detection method using run length encoding and the Hough transform. In: Proc. 10th Int. Conf. Pattern Recognition, Atlantic City, pp. 464–468 (1990)

    Google Scholar 

  2. Xiping, H., Yunfeng, L., Qingsheng, Z.: An Efficient Algorithm for Automatic Skew Correction of Color Document Image[J]. Journal of Image and Graphics 11(3), 367–371 (2006)

    Google Scholar 

  3. Yefeng, Z., Changsong, L., Xiaoqing, D., et al.: A Form Frame-Line Detection Algorithm Based on Directional Single-Connected Chain[J]. Journal of Software 22, 790–796 (2002)

    Google Scholar 

  4. Kwag, H.K., Kim, S.H., Jeong, S.H., Lee, G.S.: Efficient skew estimation and correction algorithm for document images. Image and Vision Computing, 2002 20, 25–35 (2002)

    Article  Google Scholar 

  5. Shivakumar, P., Kumar, G.H., Guru, D.S., et al.: A new boundary growing and Hough transform based approach for accurate skew detection in binary document images. Proceedings of ICISIP 11, 140–146 (2005)

    Google Scholar 

  6. Kultanen, P., Xu, L., Oja, E.: Randomized Hough TransForm[J]. Proc. of ICPR 1990 1, 631–635 (1990)

    Google Scholar 

  7. Liu, J., Ding, X., Wu, Y.: Description and Recognition of Form and Automated Form Data Entry[C]. In: Proc. Int’l. Conf. Document Analysis and Recognition, pp. 579–582 (1995)

    Google Scholar 

  8. Chen, J.-L., Lee, H.-J.: An Efficient Algorithm for Form Structure Extraction Using Strip Projection[J]. Pattern Recognition 31(9), 1353–1368 (1998)

    Article  MathSciNet  Google Scholar 

  9. Qiu, Z., Lizhuang, M., Yan, G., et al.: Skew detection method for bill image based on directional projection[J]. Computer Applications 24(9), 50–51 (2004)

    Google Scholar 

  10. Shaoguang, Z., Li, X., Linya, T.: Detecting Line Segments by Using the Structural Features of Them in Digital Image[J]. Computer Engineering & Applications 22(2), 71–74 (2004)

    Google Scholar 

  11. Kao, C.-H., Don, H.-S.: Skew Detection of Document Images Using Line Structural Information[C]. In: Proceedings of the Third International Conference on Information Technology and Applications, vol. 1(7), pp. 704–709

    Google Scholar 

  12. Jibin, G., Delie, M.: Fast detecting and rectifying slanting image in table-form documents based on run-length features[J]. Journal Huazhong Univ. of Sci. & Tech. 33(8), 69–71 (2005)

    Google Scholar 

  13. Yu, B., Jain, A.K.: A Generic System for Form Dropout. IEEE Trans. Pattern Analysis and Machine Intelligence 18(11), 1127–1131 (1996)

    Article  Google Scholar 

  14. Chhabra, A.K., Misra, V., Arias, J.: Detection of Horizontal Lines in Noisy Run Length Encoded Images: The FAST Method. In: Proc. IAPR Int’l. Workshop Graphics Recognition, pp. 35–48 (1995)

    Google Scholar 

  15. Baolin, C.: Optimization Theory & Algorithm[M] (in china). Tsinghua University Press, Beijing (1989)

    Google Scholar 

  16. Lee, H.Y., Park, W., et al.: Towards knowledge-based extraction of roads from 1 m-resolution satellite images[C], Image Analysis and Interpretation. In: Proc. 4th IEEE Southwest Symposium, pp. 171–176 (2000)

    Google Scholar 

  17. Guixiong, L., Baihua, S., Yunqing, F.: Thinning of binary image based on stroke trend analysis[J]. Optics and Precision Engineering 11(5), 527–530 (2003)

    Google Scholar 

  18. Yajun, L., Jirong, C., Xiaoliang, L.: Content Based Document Image Skew Adjusting[J]. Computer Simulation 23(12), 192–196 (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Alan L. Yuille Song-Chun Zhu Daniel Cremers Yongtian Wang

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Xie, Fy., Jiang, Zg., Wang, L. (2007). Skew Detection Algorithm for Form Document Based on Elongate Feature. In: Yuille, A.L., Zhu, SC., Cremers, D., Wang, Y. (eds) Energy Minimization Methods in Computer Vision and Pattern Recognition. EMMCVPR 2007. Lecture Notes in Computer Science, vol 4679. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74198-5_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-74198-5_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-74195-4

  • Online ISBN: 978-3-540-74198-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics