Selecting Genotyping Oligo Probes Via Logical Analysis of Data

  • Kwangsoo Kim
  • Hong Seo Ryoo
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4509)


Based on the general framework of logical analysis of data, we develop a probe design method for selecting short oligo probes for genotyping applications in this paper. When extensively tested on genomic sequences downloaded from the Lost Alamos National Laboratory and the National Center of Biotechnology Information websites in various monospecific and polyspecific in silico experimental settings, the proposed probe design method selected a small number of oligo probes of length 7 or 8 nucleotides that perfectly classified all unseen testing sequences. These results well illustrate the utility of the proposed method in genotyping applications.


oligo probes microarrays LAD set covering learning theory optimization viral pathogens 


  1. 1.
    Stears, R., Martinsky, T., Schena, M.: Trends in microarray analysis. Nature Medicine 9(1), 140–145 (2003)CrossRefGoogle Scholar
  2. 2.
    Eom, J.H., Park, S.B., Zhang, B.T.: Genetic mining of dna sequence structures for effective classification of the risk types of human papillomavirus (hpv). In: Pal, N.R., Kasabov, N., Mudi, R.K., Pal, S., Parui, S.K. (eds.) ICONIP 2004. LNCS, vol. 3316, pp. 1334–1343. Springer, Heidelberg (2004)Google Scholar
  3. 3.
    Heller, R., Schena, M., Chai, A., Shalon, D., Bedilion, T., Gilmore, J., Woolley, D., Davis, R.: Discovery and analysis of inflammatory disease-related genes using cdna microarrays. Proceedings of the National Academy of Sciences 94, 2150–2155 (1997)CrossRefGoogle Scholar
  4. 4.
    Liu, C.H., Ma, W.L., Shi, R., Ou, Y.Q., Zhang, B., Zheng, W.L.: Possibility of using dna chip technology for diagnosis of human papillomavirus. Journal of Biochemistry and Molecular Biology 36(4), 349–353 (2003)Google Scholar
  5. 5.
    Lee, Y., Lee, C.K.: Classification of multiple cancer types by multicategory support vector machines using gene expression data. Bioinformatics 19(9), 1132–1139 (2003)CrossRefGoogle Scholar
  6. 6.
    Sengupta, S., Onodera, K., Lai, A., Melcher, U.: Molecular detection and identification of influenza viruses by oligonucleotide microarray hybridization. Journal of Clinical Microbiology 41(10), 4542–4550 (2003)CrossRefGoogle Scholar
  7. 7.
    Vernet, G.: Dna-chip technology and infectious diseases. Virus Research 82, 65–71 (2002)CrossRefGoogle Scholar
  8. 8.
    Wang, D., Coscoy, L., Zylberberg, M., Avila, P., Boushey, H., Ganem, D., DeRisi, J.: Microarray-based detection and genotyping of viral pathogens. PNAS 99(24), 15687–15692 (2002)CrossRefGoogle Scholar
  9. 9.
    Li, F., Stormo, G.: Selection of optimal dna oligos for gene expression arrays. Bioinformatics 17(11), 1067–1076 (2001)CrossRefGoogle Scholar
  10. 10.
    Borneman, J., Chrobak, M., Vedova, G., Figueroa, A., Jiang, T.: Probe selection algorithms with applications in the analysis of microbial communities. Bioinformatics 17(Suppl. 1), S39–S48 (2001)Google Scholar
  11. 11.
    Rahmann, S.: Fast large scale oligonucleotide selection using the longest common factor approach. Journal of Bioinformatics and Computational Biology 1(2), 343–361 (2003)CrossRefGoogle Scholar
  12. 12.
    Klau, G., Rahmann, S., Schliep, A., Vingron, M., Reinert, K.: Optimal robust non-unique probe selection using integer linear programming. Bioinformatics 20 (Suppl. 1), i186–i193 (2004)Google Scholar
  13. 13.
    Boros, E., Hammer, P., Ibaraki, T., Kogan, A., Mayoraz, E., Muchnik, I.: An implementation of logical analysis of data. IEEE Transactions on Knowledge and Data Engineering 12, 292–306 (2000)CrossRefGoogle Scholar
  14. 14.
    Megiddo, N.: On the complexity of polyhedral separability. Discrete and Computational Geometry 3, 325–337 (1988)CrossRefMathSciNetzbMATHGoogle Scholar
  15. 15.
    Ryoo, H., Jang, I.Y.: Milp approach to pattern generation in logical analysis of data. Machine Learning, submitted (2005)Google Scholar
  16. 16.
    Altschul, S., Gish, W., Miller, W., Myers, E., Lipman, D.: Basic local alignment search tool. Journal of Molecular Biology 215, 403–410 (1990)Google Scholar
  17. 17.
    Wang, X., Seed, B.: Selection of oligonucleotide probes for protein coding sequences. Bioinformatics 19(7), 796–802 (2003)CrossRefGoogle Scholar
  18. 18.
    Cortes, C., Vapnik, V.: Support vector networks. Machine Learning 20, 273–297 (1995)zbMATHGoogle Scholar
  19. 19.
    Ullman, J.: Pattern Recognition Techniques. Crane, London (1973)Google Scholar
  20. 20.
    Vapnik, V.: Statistical Learning Theory. Wiley Interscience, Hoboken (1998)zbMATHGoogle Scholar
  21. 21.
    Hammer, P.: Partially defined boolean functions and cause-effect relationships. In: Proceedings of the International Conference on Multi-Attribute Decision Making Via OR-Based Expert Systems (1986)Google Scholar
  22. 22.
    Caprara, A., Fischetti, M., Toth, P.: A heuristic method for the set covering problem. Operations Research 47(5), 730–743 (1999)MathSciNetzbMATHCrossRefGoogle Scholar
  23. 23.
    Nemhauser, G.L., Wolsey, L.A.: Integer and Combinatorial Optimization. Wiley-Interscience Series I Discrete Mathematics and Optimization. Wiley, New York (1988)zbMATHGoogle Scholar
  24. 24.
    Muñoz, N., Bosch, F., de Sanjosé, S., Herrero, R., Castellsagué, X., Shah, K., Snijders, P., Meijer, C.J.L.M., for the International Agency for Research on Cancer Multicenter Cervical Cancer Study Group: Epidemiologic classification of human papillomavirus types associated with cervical cancer. The New England Journal of Medicine 348(6), 518–527 (2003)CrossRefGoogle Scholar
  25. 25.
    Bosch, F., Lorincz, A., Muñoz, N., Meijer, C., Shah, K.: The causal relation between human papillomavirus and cervical cancer. Journal of Clinical Pathology 55, 244–265 (2002)Google Scholar
  26. 26.
    McFadden, S., Schumann, L.: The role of human papillomavirus in screening for cervical cancer. Journal of the American Academy of Nurse Practitioners 13, 116–125 (2001)CrossRefGoogle Scholar
  27. 27.
    Park, S.B., Hwang, S.H., Zhang, B.T.: Classification of the risk types of human papillomavirus by decision trees. In: Liu, J., Cheung, Y.-m., Yin, H. (eds.) IDEAL 2003. LNCS, vol. 2690, pp. 540–544. Springer, Heidelberg (2003)Google Scholar
  28. 28.
    Snijder, E., Bredenbeek, P., Dobbe, J., Thiel, V., Ziebuhr, J., Poon, L., Guan, Y., Rozanov, M., Spaan, W., Gorbalenya, A.: Unique and conserved features of genome and proteome of sars-coronavirus, an early split-off from the coronavirus group 2 lineage. Journal of Molecular Biology 331, 991–1004 (2003)CrossRefGoogle Scholar
  29. 29.
    Koopmans, M., Wilbrink, B., Conyn, M., Natrop, G., van der Nat, H., Vennema, H., Meijer, A., van Steenbergen, J., Fouchier, R., Osterhaus, A., Bosman, A.: Transmission of h7n7 avian influenza a virus to human beings during a large outbreak in commercial poultry farms in the netherlands. Lancet 363, 587–593 (2004), CrossRefGoogle Scholar

Copyright information

© Springer Berlin Heidelberg 2007

Authors and Affiliations

  • Kwangsoo Kim
    • 1
  • Hong Seo Ryoo
    • 1
  1. 1.Division of Information Management Engineering, Korea University, 1, 5-Ka, Anam-Dong, Seongbuk-Ku, Seoul, 136-713Korea

Personalised recommendations