Overviews of Pathogen Emergence: Which Pathogens Emerge, When and Why?

  • S. Cleaveland
  • D. T. Haydon
  • L. Taylor
Part of the Current Topics in Microbiology and Immunology book series (CT MICROBIOLOGY, volume 315)

An emerging pathogen has been defined as the causative agent of an infectious disease whose incidence is increasing following its appearance in a new host population or whose incidence is increasing in an existing population as a result of long-term changes in its underlying epidemiology (Woolhouse and Dye 2001). Although we appear to be in a period where novel diseases are appearing and old diseases are spreading at an unprecedented rate, disease emergence per se is not a new phenomenon. It is almost certain that disease emergence is a routine event in the evolutionary ecology of pathogens, and part of a ubiquitous response of pathogen populations to shifting arrays of host species. While our knowledge of emerging diseases is, for the most part, limited to the time span of the human lineage, this history provides us with a modern reflection of these deeper evolutionary processes, and it is clear from this record that at many times throughout human history, demographic and behavioural changes in society have provided opportunities for pathogens to emerge.


West Nile Virus Rabies Virus Canine Distemper Virus Severe Acute Respiratory Syndrome Pathogen Emergence 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Isomaa B, Almgren P, Tuomi T, et al. Cardiovascular morbidity and mortality associated with the metabolic syndrome. Diabetes Care 2001;24:683–689.PubMedCrossRefGoogle Scholar
  2. 2.
    Wilson PW. Estimating CVD risk and the metabolic syndrome: Framingham view. Endocrinol Metab Clin North Am 2004;33:467–481.PubMedCrossRefGoogle Scholar
  3. 3.
    Eckel RH, Grundy SM, Zimmet P. The metabolic syndrome. Lancet 2005;365:9468–9415.CrossRefGoogle Scholar
  4. 4.
    Grundy SM. Metabolic syndrome: connecting and reconciling CV and diabetes world. J Am Coll Cardiol 2006;47:1093–1100.PubMedCrossRefGoogle Scholar
  5. 5.
    Lemieux I, Pascot A, Couillard C, et al. Hypertriglyceridemic waist: a marker of the atherogenic metabolic triad. Circulation 2000;102:179–184.PubMedGoogle Scholar
  6. 6.
    Assman G, Cullen P, Schulte H, et al. Simple scoring scheme for cal- culating the risk of acute coronary events based on the 10-year follow- up of the PROCAM Study. Circulation 2002;105:310–315.CrossRefGoogle Scholar
  7. 7.
    Kahn R, Buse J, Ferrannini E, et al. The metabolic syndrome: time for a clinical appraisal. Diabetes Care 2005;28:2289–2304.PubMedCrossRefGoogle Scholar
  8. 8.
    Pyora K, Ballantyne CM, Gumbiner B, et al. Reduction of CV events by simvastatin in nondiabetic CHD patients with or without the meta- bolic syndrome. Diabetes Care 2004;27:1735–1740.CrossRefGoogle Scholar
  9. 9.
    GISSI Prevenzione Investigators. Dietary supplementation with n-3 polyunsaturated fatty acids and vitamin E after myocardial infarction. Lancet 1999;354:447–455.CrossRefGoogle Scholar
  10. 10.
    Zarraga I, Ignatius GE, Schwarz E. Impact of dietary patterns and intervention on cardiovascular health. Circulation 2006;114:961–973.PubMedCrossRefGoogle Scholar
  11. 11.
    Grundy SM, Cleeman JI, Daniels SR, et al. Diagnosis and manage- ment of the metabolic syndrome (AHA/NHLBI). Circulation 2005; 112:2735–2752.PubMedCrossRefGoogle Scholar
  12. 12.
    Hu FB, Stampfer MJ, Manson JE, et al. Dietary fat intake and the risk of CHD in women. N Engl J Med 1997;337:1491–1499.PubMedCrossRefGoogle Scholar
  13. 13.
    Vessby B, Unsitupa M, Hermansen K, et al. Substituting dietary saturated for monosaturated fat impairs insulin sensitivity in healthy men and women. Diabetologia 2001;44:312–319.PubMedCrossRefGoogle Scholar
  14. 14.
    de Lorgeril M, Salen P, Bontemps L, et al. Mediterranean diet, tradi- tional risk factors and the rate of CV complications after myocardial infarction. Circulation 1999;99:779.PubMedGoogle Scholar
  15. 15.
    Sevak L, McKeigne PM, Mermot MG. Relation of hyperinsulinaemia in dietary intake in South Asians and European man. Am J Clin Nutr 1994;59:1069–1074.PubMedGoogle Scholar
  16. 16.
    Brady LM, Williams CM, Lovegrove JA. Dietary PUFA and the meta- bolic syndrome in Indian Asians living in the UK. Proc Nutr Soc 2004;63:115–125.PubMedCrossRefGoogle Scholar
  17. 17.
    Jenkins DJ, Kendall CW, Marchie A, et al. Effects of dietary portfolio of cholesterol-lowering foods vs lovastatin on serum lipids and CRP. JAMA 2003;290:502–510.PubMedCrossRefGoogle Scholar
  18. 18.
    Klien S, Burke LE, Bray GA, et al. Clinical implications of obesity with specific focus on CVD. Circulation 2004;110:2952–2967.CrossRefGoogle Scholar
  19. 19.
    Jarvi AE, Darlstrom BE, Granfeldt YE et al. Improved glycaemic con- trol and lipid profile and normalized fibrinolytic activity on a low- glycaemic index diet in type 2 diabetes patient. Diabetes Care 1999;22:10–18.PubMedCrossRefGoogle Scholar
  20. 20.
    Giugliano D, Ceriello A, Epsosito K. The effects of diet on inflamma- tion. J Am Coll Cardiol 2006;48:677–685.PubMedCrossRefGoogle Scholar
  21. 21.
    The KUOPIO Ischemic Disease Risk Factors (KIHD) Study. J Nutr 2003;133:199–204.Google Scholar
  22. 22.
    Ajani UA, Ford ES, Mokdad AL. Dietary fiber and CRP: finding from NHANES data. J Nutr 2004;134:1181–1185.PubMedGoogle Scholar
  23. 23.
    McAuley RA, Williams SM, Mann JI, et al. Intensive lifestyle changes are necessary to improve insulin sensitivity: a randomized controlled trial. Diabetes Care 2002;25:445–452.PubMedCrossRefGoogle Scholar
  24. 24.
    McAuley KA, Hopkins CM, Smith KJ, et al. Composition of high-fat and high-protein diets with a high-carbohydrate diet in insulin- resistant obese women. Diabetologia 2005;48:8–16.PubMedCrossRefGoogle Scholar
  25. 25.
    Esposito K, Marfella R, Ciotola M, et al. Effects of Mediterranean-style diet on endothelial dysfunction and markers of vascular inflammation in the metabolic syndrome: a randomized trial. JAMA 2004;292:1440–1446.PubMedCrossRefGoogle Scholar
  26. 26.
    Burr MC, Felicity AM, Gilbert JF, et al. Effects of changes in fat, fish and fiber intakes on death and myocardial infarction. Lancet 1989;2:757–761.PubMedCrossRefGoogle Scholar
  27. 27.
    Azadbakht L, Mirmiran P, Esmaillzadeh A, et al. Beneficial effects and DASH: eating plan on features of metabolic syndrome. Diabetes Care 2005;28:2823–2831.PubMedCrossRefGoogle Scholar
  28. 28.
    Rimm ED, Klatsky A, Grobbee D, et al. Review of moderate alcohol consumption and reduced risk of CHD: is the effect due to beer, wine or spirit. BMJ 1996;312:731–736.PubMedGoogle Scholar
  29. 29.
    Mukamal KJ, Maclure M, Miller E, et al. Binge drinking and mortality after acute myocardial infarction. Circulation 2005;112:3839–3845.PubMedCrossRefGoogle Scholar
  30. 30.
    Mukamal KJ, Jensen MK, Grouback M, et al. Drinking frequency mediating biomarkers, and risk of myocardial infarction in women and men. Circulation 2005;112:1406–1413.PubMedCrossRefGoogle Scholar
  31. 31.
    Yoon YS, Oh SW, Baik HW, et al. Alcohol consumption and the meta-bolic syndrome in Korean (NHANES). Am J Clin Nutr 2004;80(1):217–224.PubMedGoogle Scholar
  32. 32.
    Rusell M, De Faire U, Hellenius ML. Low prevalence of metabolic syn- drome in wine drinkers. Eur J Clin Nutr 2003;57(2):227–234.CrossRefGoogle Scholar
  33. 33.
    Stanner S. Cardiovascular Disease: Diet, Nutrition and Emerging Risk Factors. British Nutrition Foundation. London: Blackwell, 2005.Google Scholar
  34. 34.
    Thompson P, Buchner D, Pina IL, et al. Exercise and physical activity in the prevention and treatment of atherosclerotic CVD (AHA Scientific Statement). Circulation 2003;107:3109–3116.PubMedCrossRefGoogle Scholar
  35. 35.
    Laaksonen D, Lakka H, Salonen J, et al. LTPA and cardiovascular and respiratory fitness predict the development of metabolic syndrome. Diabetes Care 2002;25:1612–1618.PubMedCrossRefGoogle Scholar
  36. 36.
    Leon AS, Sanchez O. Meta analysis of the effects of aerobic exercise training on blood lipids. Circulation 2001;104:11414–11415.Google Scholar
  37. 37.
    Klein BE, Klein R, Lee KE. Components of metabolic syndrome and risk of CVD and diabetes in Beaver Dam. Diabetes Care 2002;25:1790–1794.PubMedCrossRefGoogle Scholar
  38. 38.
    Wilson PWF, Grundy SM. The metabolic syndrome. Circulation 2003;108:1422–1430.PubMedCrossRefGoogle Scholar
  39. 39.
    Haffner SM, Despres J-P, Dalkau B, et al. Waist circumference and BMI are both independently associated with CVD. J Am Coll Cardiol 2006;47(suppl A):358A.Google Scholar
  40. 40.
    Watkins LL, Sherwood A, Feinglos M, et al. Effects of exercise and weight loss on cardiac risk factors associated with syndrome X. Arch Intern Med 2003;163:1889–1895.PubMedCrossRefGoogle Scholar
  41. 41.
    Ebbeling CB, Leidig MM, Sinclair KB, et al. A reduced-glycemic load diet in the treatment of adolescent obesity. Arch Pediatr Adolesc Med 2003;157:773–779.PubMedCrossRefGoogle Scholar
  42. 42.
    Haddock CK, Poston NS, Dill PL, et al. Pharmacotherapy for obesity. Int J Obes Relat Metab Disord 2002;26:262–244.PubMedCrossRefGoogle Scholar
  43. 43.
    Arterburn DE, Crane PK, Veenstra DL, et al. The efficacy and safety of sibutramine for weight loss. Arch Intern Med 2004;164:994–1003.PubMedCrossRefGoogle Scholar
  44. 44.
    Apfelbaun M, Vague P, Ziegler O, et al. Long-term maintenance of weight loss after a very low calorie diet. Am J Med 1999;106:179–184.CrossRefGoogle Scholar
  45. 45.
    Padwal R, Li SK, Laud DC, et al. Long-term pharmacotherapy for overweight and obesity. Int J Obes 2003;27:1437–1446.CrossRefGoogle Scholar
  46. 46.
    Torgerson JS, Hauptmann J, Boldrin MN et al. Xanical in the Prevention of Diabetes in Obese Subjects (XENDOS) study. Diabetes Care 2004;27:155–161.PubMedCrossRefGoogle Scholar
  47. 47.
    Pi-Sunyer FX, Aronne LJ, Heshmati HM, et al. The RIO-North American Study; effects of rimonabant. JAMA 2006;295:761–775.PubMedCrossRefGoogle Scholar
  48. 48.
    Gadde KM, Allison DB. Cannabinoid-1 receptor antagonist, rimonabant, for management of obesity and related risks. Circulation 2006;114: 974–984.PubMedCrossRefGoogle Scholar
  49. 49.
    Kolovou GD, Anagnostopoulou KK, Cokkinos DV. Pathophysiology of dyslipidemia in the metabolic syndrome. Postgrad Med J 2005;81:358–366.PubMedCrossRefGoogle Scholar
  50. 50.
    Knopp RH, Walden CE, Retzlaff BM, et al. Long-term cholesterol- lowering effects of 4 fat-restricted diets in hypercholesterolemia and combined hyperlipidemic men. JAMA 1997;278:1509–1515.PubMedCrossRefGoogle Scholar
  51. 51.
    NCEP 3rd Report. Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol. Circulation 2002;106:3343–3321.Google Scholar
  52. 52.
    Meyers CD, Kashyap ML. Management of the metabolic syndrome- nicotinic acid. Endocrinol Metab Clin North Am 2004;33(3):557–575.PubMedCrossRefGoogle Scholar
  53. 53.
    Brown BG, Zhao XQ, Chait A, et al. Simvastatin and niacin, antioxi- dant vitamin, or the combination for the prevention of coronary disease. N Engl J Med 2001;345:1583–1592.PubMedCrossRefGoogle Scholar
  54. 54.
    Byrne CD, Wild SH. The Metabolism Syndrome. New York: John Wiley & Sons, 2005.CrossRefGoogle Scholar
  55. 55.
    Staels B, Dallongeville J, Auwerx J, et al. Mechanism of action of fibrates on lipid and lipoprotein metabolism. Circulation 1998;98(19): 2088–2093.PubMedGoogle Scholar
  56. 56.
    Steiner G. The use of fibrates and of statin in preventing atherosclerosis in diabetes. Curr Opin Lipidol 2001;12(6):611–617.PubMedCrossRefGoogle Scholar
  57. 57.
    Frick MH, Elo O, Haap K, et al. The Helsinki Heart Study. Primary pre- vention trial with gemfibrozil in middle-aged men with dyslipidemia. N Engl J Med 1987;317(20):1237–1245.PubMedCrossRefGoogle Scholar
  58. 58.
    Rubins HB, Robins SJ, Collin SD et al. Gemfibrozil for secondary pre- vention of CHD in men with low levels of HDL-C. N Engl J Med 1999;341:410–418.PubMedCrossRefGoogle Scholar
  59. 59.
    Otvos JD, Collins D, Freedman S, et al. LDL- and HDL particle subclasses predict coronary events and are favorably changed by gemfibrozil therapy in the VA-HIT. Circulation 2006;113:1156–1163.CrossRefGoogle Scholar
  60. 60.
    Vakkilainen J, Steiner G, Ansquer JC. Relationship between LDL par- ticle size, plasma lipoproteins, and progression of coronary artery dis- ease. Circulation 2003;107(13):1733–1737.PubMedCrossRefGoogle Scholar
  61. 61.
    Martin G, Duez H, Blangnart C, et al. Statin-induced inhibition of the Rho-signaling pathway activates PPARα and induces HDL ApoA-I. J Clin Invest 2001;107:1423–1432.PubMedCrossRefGoogle Scholar
  62. 62.
    Schonbeck U, Libby P. Inflammation and HMG-CoA reductase inhibitors. Circulation 2004;109(suppl II):18–28.CrossRefGoogle Scholar
  63. 63.
    Masou RD, Walter M, Jacob F. Effects of HMG-CoA reductase inhibitors on endothelial function. Circulation 2004;109(suppl II):34–41.CrossRefGoogle Scholar
  64. 64.
    Wassmann S, Lauf U, Muller K et al. Cellular antioxidant effects of atorvastatin in vitro and in vivo. Arterioscler Thromb Vasc Biol 2002;22:300–305.PubMedCrossRefGoogle Scholar
  65. 65.
    PedersenTR, Faergeman O, kastelein JJ, et al. High-dose atorvastatin vs. usual-dose simvastatin for secondary prevention after myocardial infarction. JAMA 2005;294:2437–2445.PubMedCrossRefGoogle Scholar
  66. 66.
    Freeman DJ, Morrie J, Sattar N, et al. Pravastatin and the development of diabetes mellitus, evidence for a protective treatment effect in the WESCOP Study. Circulation 2003;103:357–362.Google Scholar
  67. 67.
    Colhoun HM, Betteridge DJ, Durrington P, et al. Primary prevention of CVD with atorvastatin in type 2 diabetes in the CARDS. Lancet 2004;364:685–696.PubMedCrossRefGoogle Scholar
  68. 68.
    Albert MA, Daniel E, Rifai R. The pravastatin inflammation/CRP evaluation. JAMA 2001;286(1):64–70.PubMedCrossRefGoogle Scholar
  69. 69.
    Costa A, Casamitjana R, Casals E, et al. Effects of atorvastatin on glu- cose homoeostasis, postprandial triglyceride response and CRP in subjects with impaired fasting glucose. Diabet Med 2003; 20(9): 743–745.PubMedCrossRefGoogle Scholar
  70. 70.
    UKPDS. Effective intensive blood glucose control with metformin on complications in overweight patients with type 2 diabetes. Lancet 1998;352:854–865.CrossRefGoogle Scholar
  71. 71.
    Khan CR, Weir GC, King GL. Joslin’s Diabetes Mellitus. Philadelphia: Lippincott Williams & Wilkins, 2005.Google Scholar
  72. 72.
    Yang W-S, Jeng C-Y, Wu J-J, et al. Synthetic PPAR-γ agonists, rosiglitazone, increase plasma level of adiponectin in type 2 diabetes patient. Diabetes Care 2002;25:376–380.PubMedCrossRefGoogle Scholar
  73. 73.
    Dormandy JA, Charbonnel B, Eckland DJ et al. PROspective pioglitAzone Clinical Trial in macro Vascular Events. Lancet 2005;366:1279–1289.PubMedCrossRefGoogle Scholar
  74. 74.
    Freemantle N. How well does the evidence on pioglitazone back up researchers’ claims for a reduction in macrovascular events. BMJ 2005;331:836–838.PubMedCrossRefGoogle Scholar
  75. 75.
    Goldberg RB, Kendall DM, Deeg M, et al. A comparison of lipid and glycaemic effect of pioglitazone and rosiglitazone in patients with type 2 diabetes and dyslipidemia. Diabetes Care 2005;28:1547–1554.PubMedCrossRefGoogle Scholar
  76. 76.
    Steals B. PPAR-γ and atherosclerosis. Curr Med Res Opin 2005;2(suppl 1):S13–S20.CrossRefGoogle Scholar
  77. 77.
    Sidhu JS, Cowan D, Kaski JC. Effects of rosiglitazone on endothelial function in men with CAD without diabetes. Am J Cardiol 2004;94:151–156.PubMedCrossRefGoogle Scholar
  78. 78.
    Delerive P, Martin-Nazard F, Chinetti G, et al. PPAR activators inhibit thrombin-induced ET-1 production in human vascular endothelial cells by inhibiting the activator protein signaling pathway. Circ Res 1999;85:394–402.PubMedGoogle Scholar
  79. 79.
    Cho D-H, Chor YJ, Jo SA, et al. NO production and regulation of endothelial NO synthase phosphorylation by prolonged treatment with troglitazone. J Biol Chem 2004;279:2499–2506.PubMedCrossRefGoogle Scholar
  80. 80.
    Wang P, Anderson PO, Chen S, et al. Inhibition of the transcription fac- tors, A P-1, NF-kappa-B in CD4 T cells by PPAR-γ ligands. Int. Immunopharmacology 2001;1:802–803.Google Scholar
  81. 81.
    Chinetti G, Fruchart J-C, Staels B. PPAR-γ: nuclear receptors at the crossroads between lipid metabolism and inflammation. Inflamm Res 2000;49:497–505.PubMedCrossRefGoogle Scholar
  82. 82.
    Liang C-P, Han S, Okamoto H, et al. Increased CD36 protein as response to defective insulin signaling in macrophages. J Clin Invest 2004;133:764–773.Google Scholar
  83. 83.
    Goetze S, Xi XP, Kawanto H, et al. PPARγ-ligands inhibit migration mediated by multiple chemoattractant in vascular smooth muscle cells. J Cardiovasc Pharmacol 1999;33:798–806.PubMedCrossRefGoogle Scholar
  84. 84.
    Rampamelli S, Rinaldi T, Perriello G, et al. Effects of pioglitazone on coagulation and thrombosis in comparison in patient with type 2 diabetes. 64th Sci Session ADA, Orlando, June 4–8, 2004.Google Scholar
  85. 85.
    Lebovitz HE. α-Glucosidase inhibitors as agents in the treatment of diabetes. Diabetes Rev 1998;6:132–145.Google Scholar
  86. 86.
    Hanefield M, Cagaty M, Petrowitch T, et al. Acarbose reduces the risk of myocardial infarction in type 2 diabetic patients. Eur Heart J 2004;25(1):10–16.CrossRefGoogle Scholar
  87. 87.
    Chiasson Jl, Josse RG, Gomis R, et al. Acarbose for the prevention of type 2 diabetes: STOP-NIDDM trial. Lancet 2002;3591:2072–2077.CrossRefGoogle Scholar
  88. 88.
    Curtis J, Wilson C. Preventing type 2 diabetes mellitus. J Am Board Fam Pract 2005;18:37–43.PubMedCrossRefGoogle Scholar
  89. 89.
    Knowler WC, Barrett-Connor E, Fowler SE, et al. Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin (DPP). N Engl J Med 2002;346:393–403.PubMedCrossRefGoogle Scholar
  90. 90.
    Tuomilehto J, Lindstrom J, Eriksson JG, et al. Prevention of type 2 diabetes mellitus by changes in lifestyle among subjects with impaired glucose tolerance. N Engl J Med 2001;344:1343–1350.PubMedCrossRefGoogle Scholar
  91. 91.
    Heymsfield SB, Segal KR, Hauptman J, et al. Effects of weight loss with orlistat on glucose tolerance and progression of type 2 diabetes in obese adults. Arch Intern Med 2000;160:1321–1326.PubMedCrossRefGoogle Scholar
  92. 92.
    Sjostrom CD, Lissner L, Wedel H, et al. Reduction in the incidence of diabetes, hypertension and lipid disturbances after intentional weight loss induced by bariatric surgery. Obes Res 1999;7:477–484.PubMedGoogle Scholar
  93. 93.
    Yusuf S, Gerstein H, Hoogwerf B, et al. Ramipril and the develop- ment of diabetes. JAMA 2001;286:1882–1885.PubMedCrossRefGoogle Scholar
  94. 94.
    CAPP study. Effect of angiotensin II blockers compared with conven- tional therapy on CV morbidity and mortality in hypertension. Lancet 1999;353:611–616.CrossRefGoogle Scholar
  95. 95.
    Lindholm LH, Ibsen H, Borch-Johnsen K, et al. Risk of new onset diabetes in the LIFE study. J Hypertension 2002;20:1879–1886.CrossRefGoogle Scholar
  96. 96.
    DREAM investigators. Effects of ramipril on the incidence of diabetes. N Engl J Med 2006;355:1551–1562.CrossRefGoogle Scholar
  97. 97.
    Freeman DJ, Norie J, Sattar N, et al. Pravastatin and the development of diabetes mellitus. Evidence for a protective treatment effect in WOSCOPS. Circulation 2001;103:351–362.Google Scholar
  98. 98.
    Kanaya AM, Herrington D, Vittinghoff E, et al. Glycemic effects of postmenopausal hormone therapy. Ann Intern Med 2003;139:1–9.Google Scholar
  99. 99.
    Chobanian AV, Bakris GL, Black HR, et al. JNC report. Hypertension 2003;42:1204–1252.CrossRefGoogle Scholar
  100. 100.
    Cutler JA, Follmann D, Allender PS. Randomized trials of sodium restriction. Am J Clin Nutr 1997;65(suppl 2):643S–651S.PubMedGoogle Scholar
  101. 101.
    Stearne MR, Palmer SL, Hammersley MS, et al. UKPDS. Tight blood pressure control and risk of macro vascular and microvascular complications in type 2 diabetes. Br Med J 1998;317:703–713.Google Scholar
  102. 102.
    Effects of ramipril on CV and microvascular outcomes in people with diabetes mellitus. Lancet 2000;355:252–259.Google Scholar
  103. 103.
    Lewis EJ, Hunsicker LG, Clarke WR, et al. Renoprotective effects of the ARB irbesartan in patients with nephropathy due to type 2 diabetes (IDNT). N Engl J Med 2001;345:851–860.PubMedCrossRefGoogle Scholar
  104. 104.
    Brenner BM, Cooper ME, deZeeuw D, et al. Effects of losartan on renal and CV outcomes in patients with type 2 diabetes in nephropa- thy. N Engl J Med 2001;345:861–869.PubMedCrossRefGoogle Scholar
  105. 105.
    Dahlof B, Sever P, Poulter N, et al. Prevention of CV events with an antihypertensive regimen of amlodipine adding perindopril as required vs atenolol adding bendroflumethiazide as required. Lancet 2005;366:895–906.PubMedCrossRefGoogle Scholar
  106. 106.
    Wild S, Lee A, Fowkes G. Ankle-brachial pressure index and metabolic syndrome are independent predictors of CVD mortality in the Edinburgh Artery Study Cohort. Circulation 2004;109(6):72. 107. Selvin E, Erlinger TD. Prevalence and risk factors for PAD results from the NHANES 1999–2000. Circulation 2004;109(6):43.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • S. Cleaveland
    • 1
  • D. T. Haydon
    • 2
  • L. Taylor
    • 3
  1. 1.Centre for Tropical Veterinary Medicine, Royal (Dick) School of VeterinaryUniversity of EdinburghRoslinUK
  2. 2.Division of Environmental and Evolutionary BiologyUniversity of GlasgowGlasgowUK
  3. 3.Institute for Stem Cell ResearchUniversity of EdinburghEdinburghUK

Personalised recommendations