Advertisement

P

  • Axel M. Gressner
  • Torsten Arndt
Chapter
  • 4.1k Downloads

Literatur

  1. Scharpé S, Iliano L (1987) Two Indirect Tests of Exocrine Pancreatic Function Evaluated. Clin Chem 33:5–12PubMedGoogle Scholar
  2. Walkowiak J, Nousia-Arvanitakis S, Henker J et al (2005) Indirect Pancreatic Function Tests in Children. J Pediatr Gastr Nutr 40:107–114Google Scholar
  3. Paigen K, Pacholec F, Levy HL (1982) A new method of screening for inherited disorders of galactose metabolism. J Lab Clin Med 99:895–907PubMedGoogle Scholar
  4. Schweitzer-Krantz S (2003) Early diagnosis of inherited metabolic disorders towards improving outcome: the controversial issue of galactosemia. Eur J Pediatr 162:850–853Google Scholar
  5. Stryer L (1990) Biochemie. Spektrum der Wissenschaft Verlagsgesellschaft, HeidelbergGoogle Scholar
  6. Wiesmüller GA, Henne A, Leng G (1995) Metalle/Palladium. In: Wichmann HE, Schlipköter HW, Fülgraff G (Hrsg) Handbuch der Umweltmedizin. ecomed Verlagsgesellschaft, Landsberg/Lech, VI-3Google Scholar
  7. Hallmann L (1980) Klinische Chemie und Mikroskopie. Georg Thieme Verlag, Stuttgart New YorkGoogle Scholar
  8. Stöcker W, Otte M, Ulrich S et al (1984) Autoantikörper gegen exokrines Pankreas und gegen intestinale Becherzellen in der Diagnostik des Morbus Crohn und der Colitis ulcerosa. Dtsch Med Wochenschr 109:1963–1969PubMedGoogle Scholar
  9. Stöcker W, Otte M, Ulrich S et al (1987) Autoimmunity to pancreatic juice in Crohn' disease. Results of an autoanti-body screening in patients with chronic inflammatory bowel disease. Scand J Gastroenterol Suppl 139:41–52PubMedGoogle Scholar
  10. Bordi C, Azzoni C, ’Adda T et al (2002) Pancreatic polypeptide-related tumors. Peptides 23:339–348PubMedGoogle Scholar
  11. Lawson N, Chesner I (1994) Tests of exocrine pancreatic function. Ann Clin Biochem 31:305–314PubMedGoogle Scholar
  12. Soussi T (2000) p53 Antibodies in the sera of patients with various types of cancer: a review. Cancer Res 60:1777–1788PubMedGoogle Scholar
  13. Mc Cormick DB, Klee GG (2001) Tietz Fundamentals of Clinical Chemistry. 5th edn. WB Saunders, PhiladelphiaGoogle Scholar
  14. Bässler KH, Golly I, Loew D et al (2002) Vitaminlexikon. 3. Aufl. Urban und Fischer, MünchenGoogle Scholar
  15. Westermeier R (1990) Flektrophorese-Praktikum. VCH, WeinheimGoogle Scholar
  16. Westermeier R (2004) Hektrophorese-Praktikum. VCH, WeinheimGoogle Scholar
  17. Diagnostica MERCK (1986) Hämatologische Labormethoden. 4. Aufl. GIT Verlag, Darmstadt, S 27–28Google Scholar
  18. Koeppen KM, Heller S (1991) Differentialblutbild (panoptische Färbung). In: Boll I, Heller S (Hrsg)Praktische Blutzelldiagnostik. Springer-Verlag, Berlin Heidelberg New York, S174Google Scholar
  19. König H, Hallbach J (2002) Nichtopioide Analgetika und Antirheumatika. In: Kölpmann WR (Hrsg) Klinisch-toxikologische Analytik. Wiley-VCH, Weinheim, S 125–147Google Scholar
  20. Wedler G (2004) Lehrbuch der Physikalischen Chemie. 5. Aufl. Wiley-VCH, Weinheim Hollemann-Wiberg (1995) Lehrbuch der Anorganischen Chemie. 101. Aufl. W. de Gruyter, BerlinGoogle Scholar
  21. Rasch D (1988) Biometrisches Wörterbuch. Verlag Harri Deutsch, Frankfurt am MainGoogle Scholar
  22. Begemann H, Begemann M (1997) Praktische Hämatologie, 10. Aufl. Georg Thieme Verlag, Stuttgart, S 149Google Scholar
  23. Thomas L (2005) Angeborene und erworbene Immunantwort. In: Thomas L (Hrsg) Labor und Diagnose. 6. Aufl. TH-Books, Frankfurt/Main, S 1052–1065Google Scholar
  24. Thomas L (2005) Monoklonale Immunglobuline. In: Thomas L (Hrsg) Labor und Diagnose. 6. Aufl. TH-Books, Frankfurt/Main, S 1085–1110Google Scholar
  25. Geldmacher-von Mallinckrodt M, Degel F, Daltrup T et al (2002) Paraquat. In: Kulpmann WR (Hrsg) Klinisch-toxikologische Analytik. Wiley-VCH, Weinheim, S 471–482Google Scholar
  26. Voll R, Schmidt-Gayk H, Wiedeman J et al (1978) Radioimmunoassay for Parathyrin. Characterization of Six Different Antigens and Antisera. J Clin Chem Clin Biochem 16:269–77PubMedGoogle Scholar
  27. Martin KJ, Akhtar I, Gonzalez EA (2004) Parathyroid Hormone: New Assays, New Receptors. Semin Nephrol 24:3–9PubMedGoogle Scholar
  28. Cioffl M, Corradino M, Gazzerro P et al (2000) Serum Concentrations of Intact Parathyroid Hormone in Healthy Children. Clin Chem 46:863–864Google Scholar
  29. Sokoll LJ, Wians FHJ, Remaley AT (2004) Rapid Intraoperative Immunoassay of Parathyroid Hormone and Other Hormones: A New Paradigm for Pointof-Care Testing. Clin Chem 50:1126–1135PubMedGoogle Scholar
  30. Carter AB, Howanitz PJ (2003) Intraoperative Testing for Parathyroid Hormone: A Comprehensive Review of the Use of the Assay and the Relevant Literature. Arch Pathol Lab Med 127:1424–1442PubMedGoogle Scholar
  31. Leitlinien der Deutschen Gesellschaft für Chirurgie (1999) Therapie des Hyperparathyreoidismus. Grundlagen der Chirurgie G 86, Beilage zu: Mitteilungen der Dt Ges f Chirurgie, 28. Jg., Nr. 4, StuttgartGoogle Scholar
  32. Blind E, Raue F (2005) Parathormon-related Protein. In: Thomas L (Hrsg) Labor und Diagnose. 6. Aufl. TH-Books, Frankfurt/Main, S 361–364Google Scholar
  33. Taylor KB, Roitt IM, Donlach D et al (1962) Autoimmune phenomena in pernicious anaemia: Gastric antibodies. Br Med J 24:1347–1352Google Scholar
  34. Burnett RW, Covington AK, Maas AHJ et al (1989) IFCC Method for Tonometry of Blood. J Clin Chem Clin Biochem 27:403–408PubMedGoogle Scholar
  35. LŐffler H (1991) Zytochemische Methoden. In: Boll I, Heller S (Hrsg) Praktische Blutzelldiagnostik. Springer-Verlag, Berlin Heidelberg New York, S 191–192Google Scholar
  36. Briedigkeit L, Müller-Plathe O, Schlebusch H, Ziems J (1998) Patientennahe Laboratoriumsdiagnostik (Point-of-Care Testing). I. Empfehlungen der Arbeitsgemeinschaft Medizinische Laboratoriumsdiagnostik (AML) zur Einführung und Qualitätssicherung von Verfahren der patientennahen Laboratoriumsdiagnostik (POCT). J Lab Med 22:414–420Google Scholar
  37. Bundesärztekammer (2001) Richtlinie der Bundesärztekammer zur Qualitätssicherung quantitativer laboratori-umsmedizinischer Untersuchungen. Dtsch Ãrztebl 98:A2747–2759Google Scholar
  38. Bundesärztekammer (2003) Richtlinie der Bundesärztekammer zur Qualitätssicherung quantitativer laboratori-umsmedizinischer Untersuchungen. Dtsch Ãrztebl 100:C2595–2598Google Scholar
  39. Guder WG, Narayanan S, Wisser H, Zawta B (2000) Proben zwischen Patient und Labor. 2. Aufl. GIT Verlag, DarmstadtGoogle Scholar
  40. Dybkaer R (1997) Vocabulary for Use in Measurement Procedures and Description of Reference Materials in Laboratory Medicine Eur J Clin Chem Clin Biochem 35:141–173PubMedGoogle Scholar
  41. Szostecki C, Krippner H, Penner E et al (1987) Autoimmune sera recognize a 100 kD nuclear protein antigen (sp-100). Clin Exp Immunol 68:108–116PubMedGoogle Scholar
  42. Züchner D, Sternsdorf T, Szostecki C et al (1997) Prevalence, kinetics, and therapeutic modulation of autoantibodies against Sp100 and promyelocytic leukemia protein in a large cohort of patients with primary biliary cirrhosis. Hepatology 26:1123–1130PubMedGoogle Scholar
  43. Muratori P, Muratori L, Ferrari R et al (2003) Characterization and clinical impact of antinuclear antibodies in primary biliary cirrhosis. Am J Gastroenterol 98:431–437PubMedGoogle Scholar
  44. Wichmann I, Montes-Cano MA, Respaldiza N et al (2003) Clinical significance of anti-multiple nuclear dots/Sp100 autoantibodies. Scand J Gastroenterol 38:996–999PubMedGoogle Scholar
  45. Janka C, Selmi C, Gershwin ME et al (2005) Small ubiqui-tin-related modifiers: a novel and independent class of autoantigens in primary biliary cirrhosis. Hepatology, in pressGoogle Scholar
  46. Miyachi K, Fritzler MJ, Tan CK (1978) Autoantibody to a nuclear antigen in proliferating cells. J Immunol 121:2228–2234PubMedGoogle Scholar
  47. Kawamura K, Kobayashi Y, Tanaka T et al (2000) Intranuclear localization of proliferating cell nuclear antigen during the cell cycle in renal cell carcinoma. Anal Quant CytolHistol 22:107–113Google Scholar
  48. Unger KK (Hrsg) (1989) Handbuch der HPLC. Teil 1 Leitfaden für Anfanger und Praktiker. GIT Verlag, DarmstadtGoogle Scholar
  49. Hartung J, Elpelt B, KlÖsener KH (1995) Statistik, Lehr-und Handbuch der angewandten Statistik. Oldenbourg Verlag, MünchenGoogle Scholar
  50. Koeppen KM, Heller S (1991) Differentialblut-bild (panoptische Färbung). In: Boll I, Heller S (Hrsg) Praktische Blutzelldiagnostik. Springer-Verlag, Berlin Heidelberg New York, S 180Google Scholar
  51. Feist D (2003) Diagnostik und Therapie des Morbus Wilson. Dt Ãrztebl 100:B1213Google Scholar
  52. Käferstein H, Külpmann WR, Sticht G et al (2002) Pentazocin. In: Külpmann WR (Hrsg) Klinisch-to-xikologische Analytik. Wiley-VCH, Weinheim, S 181–185Google Scholar
  53. LÖffler G, Petrides PE (Hrsg) (2003) Biodlemie und Pathobiochemie. 7. Aufl. Springer-Verlag, Berlin Heidelberg New YorkGoogle Scholar
  54. Bircher J, Sommer W (1999) Klinisch-pharma-kologische Datensammlung. 2. Aufl. Wiss. Verlagsgesellschaft, StuttgartGoogle Scholar
  55. Henderson AR, Tietz NW, Rinker AD (1994) In: Tietz NW, Burtis CA, Ashwood ER (eds) Clinical Chemistry. WB Saunders, Philadelphia, pp 1576–1644Google Scholar
  56. Henderson AR, Tietz NW, Rinker AD (1994) In: Tietz NW, Burtis CA, Ashwood ER (eds) Clinical Chemistry. WB Saunders, Philadelphia, pp 1576–1644Google Scholar
  57. Stanley S, Wynne K, Bloom S (2004) Gastrointestinal Satiety Signals. III. Glucagon-Like Peptide 1, Ox-yntomodulin, Peptide YY and Pancreatic Polypeptide. Am J Physiol Gastrointest Liver Physiol 286:G693–G697PubMedGoogle Scholar
  58. Westermeier R, Naven T (2002) Proteomics in Practice: A Laboratory Manual of Proteome Analysis. Wiley-VCH, WeinheimGoogle Scholar
  59. Hesse M, Meier H, Zeeh B (2005) Spektroskopische Methoden in der organischen Chemie. Georg Thieme Verlag, StuttgartGoogle Scholar
  60. Krieger DT (1986) An Overview of Neuropeptides. Res Publ Assoc Res Nerv Ment Dis 64:1–32PubMedGoogle Scholar
  61. Raffael A, Nebe T, Valet G (1994) Grundlagen der Durchflusszytometrie. In: Schmitz G, Rothe G (Hrsg) Durchflusszytometrie in der klinischen Zelldiagnostik. Schattauer Verlag, Stuttgart, S 10Google Scholar
  62. Noonan DM, Fulle AJ, Valente P et al (1991) The complete sequence of perlecan, a basement membrane heparan sulfate proteoglycan, reveals extensive similarity with laminin A chain, low density lipoprotein receptor and the neural cell adhesion molecule. J Biol Chem 266:22939–22947PubMedGoogle Scholar
  63. Costell M, Gustafsson E, Aszodi A et al (1999) Perlecan maintains the integrity of cartilage and some basement membranes. J Cell Biol 147:1109–1122PubMedGoogle Scholar
  64. Wanders RJ, Waterham HR (2005) Peroxisomal disorders I: biochemistry and genetics of peroxisome biogenesis disorders. Clin Genet 67:107–33PubMedGoogle Scholar
  65. Haeckel R, Fischer G, Fischer M et al (1984) Vorschläge zur Definition von Zeitbegriffen. Dt Ges Klin Chem Mitteilungen 14:187–192Google Scholar
  66. Geldmacher-von Mallinckrodt M, Degel F, Daldrup T et al (2002) Pestizide. In: Külpmann WR (Hrsg) Klinisch-toxikologische Analytik. Wiley-VCH, Wein-heim, S 451–499Google Scholar
  67. Widdop B (1997) Analgesics, antipyretics and non-steroidal anti-inflammatory agents. In: Brandenberger H, Maes RAA (eds) Analytical Toxicology. W. de Gruyter, Berlin, S 509–542Google Scholar
  68. Scharmbeck CM (2002) PFA100°: Globaltest der primären Hämostase? J Lab Med 26:557–562Google Scholar
  69. Theml H, Diem H, Haferlach T (2002) Taschenatlas der Hämatologie. 5. Aufl. Georg Thieme Verlag, Stuttgart, S 68Google Scholar
  70. Daunderer M (1995) Lexikon der Pflanzenund Tiergifte. Nikol Verlagsgesellschaft, HamburgGoogle Scholar
  71. Linder MW, Valdes R (2001) Fundamentals of pharmacogenetics. In: Shaw LM, Kwong TC (eds) The clinical toxicology laboratory. AACC Press, Washington DC, S 437–454Google Scholar
  72. Käferstein H, Sticht G, von Meyer L et al (2002) Phencyclidin. In: Külpmann WR (Hrsg) Klinisch-toxiko-logische Analytik. Wiley-VCH, Weinheim, S 394–397Google Scholar
  73. Richtlinien des Bundsausschusses der Ãrzte und Krankenkassen über die Früherkennung von Krank-heiten bei Kindern bis zur Vollendung des 6. Lebensjahres (Kinder-Richtlinien) Bundesanzeiger Nr.26 vom 21.3.2000Google Scholar
  74. Yonekura T, Kamata S, Wasa M et al (1991) Simultaneous analysis of plasma phenethylamine, phenylet-hanolamine, tyramine and octopamine in patients with hepatic encephalopathy. Clin Chim Acta 199:91–98PubMedGoogle Scholar
  75. Hannak D, Külpmann WR, Hallbach J (2002) Antiepileptika. In: Külpmann WR (Hrsg) Klinisch-toxi-kologische Analytik. Wiley-VCH, Weinheim, S 225–236Google Scholar
  76. Deininger MWN, Goldman JM, Melo JV (2000) The molecular biology of chronic myeloid leukemia. Blood 96:3343–3356PubMedGoogle Scholar
  77. Kurokawa K, Levine BS, Lee DBN, Massry SG (1985) Physiology of Phosphorus Metabolism and Patho-physiology of Hypophosphatemia and Hyperphosphatemia. In: Arieff AI, DeFronzo RA (eds) Fluid, Elektrolyte and Acid-Base Disorders. Churchill Livingstone, New YorkGoogle Scholar
  78. Soldin SJ, Rifai N, Hicks JMB (1995) Biochemical Basis of Pediatric Disease. 2. edn. AACC Press, PhiladelphiaGoogle Scholar
  79. Hesse A, Jahnen A, Klocke K, Nolde A, Scharrel O (1994) Nachsorge bei Harnsteinpatienten. Gustav-Fischer-Verlag, Jena StuttgartGoogle Scholar
  80. Tietz NW, Rinker AD, Shaw LM (1983) IFCC Methods for the Measurement of Catalytic Concentration of Enzymes, Part 5. IFCC Method for Alkaline Phosphatase. J Clin Chem Clin Biochem 21:731–748PubMedGoogle Scholar
  81. Moss DW (1992) Perspectives in alkaline phosphatase research. Clin Chem 38:2486–2492PubMedGoogle Scholar
  82. Harris H (1989) The human alkaline phosphatases: what we know and what we don’t know. Clin Chim Acta 186:133–150Google Scholar
  83. Thomas L (2005) Saure Phosphatase. In: Thomas L (Hrsg) Labor und Diagnose. 6. Aufl. TH-Books, Frankfurt/Main, S 118–120Google Scholar
  84. Thomas L (2005) Saure Phosphatase. In: Thomas L (Hrsg) Labor und Diagnose. 6. Aufl. TH-Books, Frankfurt/Main, S 118–120Google Scholar
  85. LÕffler H (1991) Zytochemische Methoden. In: Boll I, Heller S (Hrsg) Praktische Blutzelldiagnostik.Springer-Verlag, Berlin Heidelberg New York, S 194–195Google Scholar
  86. Walton RJ, Bijvoet OLM (1975) Nomogram for Derivation of Renal Threshold Phosphate Concentration. Lancet 11:309–311Google Scholar
  87. Lamerz R, Dati F, Feller AC et al (1998) Tumordiagnostik: Tumormarker bei malignen Erkrankungen. Behringwerke AG, MarburgGoogle Scholar
  88. Büchler M, Malfertheiner F, Schädlich H et al (1989) Role of Phospholipase A2 in Human Acute Pancreatitis. Gastroenterology 97:1521–1526PubMedGoogle Scholar
  89. Six DA, Dennis EA (2000) The expanding superfamily of phospholipase A(2) enzymes: classification and characterization. Biochim Biophys Acta 1488:1–19PubMedGoogle Scholar
  90. Rebecchi MJ, Pentyala SN (2000) Structure, function, and control of phosphoinositide-specific phospholipase C. Physiol Rev 80:1291–1335PubMedGoogle Scholar
  91. Rhee SG (2001) Regulation of phosphoinositide-specific phospholipase C. Annu Rev Biochem 70:281–312PubMedGoogle Scholar
  92. Exton JH (2002) Phospholipase D-structure, regulation and function. Rev Physiol Biochem Pharmacol 144:1–94PubMedGoogle Scholar
  93. Exton JH (2002) Regulation of phospholipase D. FEBS Lett 531:58–61PubMedGoogle Scholar
  94. Huuskonen J, Okkonen VM, Jauhiainen M et al (2001) The impact of phospholipid transfer protein (PLTP) on HDL metabolism. Atherosclerosis 155:269–281PubMedGoogle Scholar
  95. Wilson WA, Gharavi AE, Koike T et al (1999) International consensus statement on preliminary classification criteria for definite antiphospholipid syndrome: report of an international workshop. Arthritis Rheum 42:1309–1311PubMedGoogle Scholar
  96. Cervera R et al (2002) Antiphospholipid syndrome: Clinical and immunologic manifestations and patterns of disease expression in a cohort of 1,000 patients. Arthritis Rheum 46:1019–1027PubMedGoogle Scholar
  97. Alarcon-Segovia D, Cabral AR (2000) The anti-phospholipid antibody syndrome: clinical and serological aspects. Baillieres Best Pract Res Clin Rheumatol 14:139–150PubMedGoogle Scholar
  98. Rifai N, Warnick GR, Dominiczak MH (2000) Handbook of Lipoprotein Testing. 2nd edn. AACC Press, Washington DCGoogle Scholar
  99. Latscha HP, Linti GW, Klein HA (2004) Analytische Chemie Chemie-Basiswissen III. Springer-Verlag, Berlin Heidelberg New YorkGoogle Scholar
  100. Reem GH (1975) Phosphoribosylpyrophosphate overproduction, a new metabolic abnormality in the Lesch Nyhan Syndrom. Science 190:1098–1099PubMedGoogle Scholar
  101. Becker MA, Losmann MJ, Kim M (1987) Mechanisms of accelerated purine nudeotide synthesis in human fibroblasts with superactive phosphoribosylpyrophosphate synthetases. J Biol Chem 262:5596–5602PubMedGoogle Scholar
  102. Rifai N, Warnick GR, Dominiczak MH (2000) Handbook of Lipoprotein Testing. 2nd edn. AACC Press, Washington DCGoogle Scholar
  103. Enzyme Nomenclature (1992) Academic Press, San Diego; und Supplements 1-5 in Eur J Biochem (1994) 223:1-5; Eur J Biochem (1995) 232:1-6; Eur J Biochem (1996) 237:1-5; Eur J Biochem (1997) 250:1-6; Eur J Biochem (1999) 264:610-650Google Scholar
  104. Näser KH, Pesdiel G (1986) Physikalisch-chemische Meßmethoden. Deutscher Verlag für Grundstoffindustrie, LeipzigGoogle Scholar
  105. Näser KH, Peschel G (1986) Physikalisch-chemische Meßmethoden. Deutscher Verlag für Grundstoffindustrie, LeipzigGoogle Scholar
  106. McNaught AD, Wilkinson A (eds) (1997) IUPAC Compendium of chemical terminology. Blackwell Science (im Internet frei zugängig unter www.iupac.org/publications/compendium)
  107. Inczedy J, Lengyel T, Ure AM (1998) Compendium of Analytical Nomenclature (definitive rules 1997). 3rd edn. Blackwell Science (online frei zugängig unter www.iupac.org/publications/analytical_compendium)
  108. Inczedy J, Lengyel T, Ure AM (1998) Compendium of Analytical Nomenclature (definitive rules 1997). 3rd edn. Blackwell Science (online frei zugängig unter www.iupac.org/publications/analytical_compendium)
  109. Näser KH, Peschel G (1986) Physikalisch-chemische Meßmethoden. Deutscher Verlag für Grundstoffindustrie, LeipzigGoogle Scholar
  110. Näser KH, Peschel G (1986) Physikalisch-chemische Meßmethoden. Deutscher Verlag für Grundstoffindustrie, LeipzigGoogle Scholar
  111. Maas AHJ, Weisberg HF, Burnett RW et al (1987) Reference Method for pH Measurement in Blood. J Clin Chem Clin Biochem 25:281–289PubMedGoogle Scholar
  112. Soldin SJ, Rifai N, Hicks JMB (1995) Biochemical Basis of Pediatric Disease. 2nd edn. AACC Press, Washington DCGoogle Scholar
  113. Tietz NW (1995) Clinical Guide to Laboratory Tests. 3rd edn. WB Saunders, PhiladelphiaGoogle Scholar
  114. Wanders RJ, Jansen GA, Lloyd MD (2003) Phytanic acid alpha-oxidation, new insights into an old problem: a review. Biochem Biophys Acta 1631:119–135PubMedGoogle Scholar
  115. Falbe J, Regitz M (Hrsg) (1991) Römpp Chemie Lexikon. Georg Thieme Verlag, Stuttgart New YorkGoogle Scholar
  116. Schläpfer M, Bovens M (2003) Nachweis und quantitative Bestimmung von Psilocin-und Psilocybin in halluzinogenen Pilzen. Toxichem + Krimtech 71/2:158–163 www.zauberpilz.com Google Scholar
  117. Reinhart WH, Wyss EJ, Arnold D et al (1994) Hereditary sherocytosis with protein band 3 defect in a Swiss kindred. Br J Haematol 86:147–155PubMedGoogle Scholar
  118. Vaudry D, Gonzalez BJ, Basille M et al (2000) Pituitary Adenylate Cyclase-Activating Polypeptide and its Receptors: from Structure to Functions. Pharmacol Rev 52:269–324PubMedGoogle Scholar
  119. Guder WG, Nolte J (2005) Das Laborbuch für Klinik und Praxis. Urban und Fischer, MünchenGoogle Scholar
  120. Blau N, Duran M, Blaskovics ME et al (eds) (2001) Physician’s Guide to the Laboratory Diagnosis of Metabolic Diseases. 2nd edn. Springer-Verlag, Berlin Heidelberg New YorkGoogle Scholar
  121. Montaser A, Golightly DW (eds) (1987) Inductively Coupled Plasmas in Analytical Atomic Spectrometry. VCH, WeinheimGoogle Scholar
  122. Broekaert JAC (2002) Analytical Atomic Spectrometry with Flames and Plasmas. Wiley-VCH, WeinheimGoogle Scholar
  123. Löffler H, Rastetter J (1999) Atlas der klinischen Hämatologie. 5. Aufl. Springer-Verlag, Berlin Heidelberg New York, S 64–65Google Scholar
  124. Bachmann F (2001) Plasminogen-Plasmin Enzym System. In: Colman RW, Hirsh J, Marder VJ (eds) Hemostasis and Thrombosis. Iippincott Wilhelms & Wilkins, Philadelphia, pp 275–320Google Scholar
  125. Bartels M, von Depka M (2003) Das Gerinnungskompendium. Georg Thieme Verlag, Stuttgart New YorkGoogle Scholar
  126. Bachmann F (2001) Plasminogen-Plasmin Enzyme System. In: Colman RW, Hirsh J, Marder VJ (eds) Hemostasis and Thrombosis. Lippincott Williams & Wilkins, Philadelphia, pp 275–320Google Scholar
  127. Löffler H, Rastetter J (1999) Atlas der klinischen Hämatologie. 5. Aufl. Springer-Verlag, Berlin Heidelberg New York, S 288–289Google Scholar
  128. Seitz HM, Maier W (1994) Parasitologie-Plasmodien, Erreger der Malaria. In: Brandis H, Koöhler W, Eggers HJ et al (Hrsg) Lehrbuch der Medizinischen Mikrobiologie. Gustav Fischer Verlag, Stuttgart, S 658–665Google Scholar
  129. Koönig KH, Schuster M (1994) Platinum group metals. In: Seiler HG, Sigel A, Sigel H (eds) Handbook on metals in clinical and analytical chemistry. Marcel Dekker, New York Basel Hong Kong, S 521–530Google Scholar
  130. Budde U (2002) Diagnose von Funktionsstoörungen der Thrombozyten mit Hilfe der Aggregometrie. J Lab Med 26:564–571.Google Scholar
  131. Kehrel BE (2003) Blutplattdien: Biochemie und Physiologie. Hamostaseologie 4:149–158Google Scholar
  132. Fukami MH, Holmsen H, Kowalski MA, Niewiarowski S (2001) Platelet secretion. In: Colman RW, Hirsh J, Marder VJ, Clowes AW, George JN (eds) Hemostasis and Thrombosis: Basic Principles and Clinical Practice. 4th edn. JB Lippincott Co., Phladelphia, pp 561–574Google Scholar
  133. Stamm D, Büttner J (1995) Beurteilung klinisch-chemischer Analysenergebnisse. In: Greiling H, Gressner AM (Hrsg) Lehrbuch der Klinischen Chemie und Pathobiochemie. 3 Aufl. Schattauer Verlag, StuttgartGoogle Scholar
  134. (2001) Qualitaätsmanagement in der Laboratoriumsmedizin. Teil 2: Begriffe zur Qualitaät und Anwen-dung von Untersuchungsverfahren. DIN 58936-2, 4.6. Beuth-Verlag, BerlinGoogle Scholar
  135. Hafner L, Hoff P (1977) Genetik. Hermann Schroedel Verlag, Hannover Dortmund Darmstadt BerlinGoogle Scholar
  136. Kessler A, Grünert C, Wood WG (1994) The Limitations and Usefulness of CRP and Elastase-Alpha-1-Proteinase Inhibitor Complexes as Analytes in the Diagnosis and Follow-up of Sepsis in Newborns and Adults. Eur J Clin Chem Clin Biochem 32:365–368Google Scholar
  137. Reichlin M, Maddison PJ, Targoff I et al (1984) Antibodies to a nuclear/nucleolar antigen in patients with polymyositis overlap syndromes. J Clin Immunol 4:40–44PubMedGoogle Scholar
  138. Koeppen KM, Heller S (1991) Differentialblutbild (panoptische Farbung). In: Boll I, Heller S (Hrsg) Praktische Blutzelldiagnostik. Springer-Verlag, Berlin Heidelberg New York, S 171Google Scholar
  139. Latscha HP, Linti GW, Klein HA (2004) Analy-tische Chemie Chemie-Basiswissen III. Springer-Verlag, Berlin Heidelberg New YorkGoogle Scholar
  140. Westermeier R (1990) Elektrophorese-Praktikum. VCH, WeinheimGoogle Scholar
  141. Lottspeich F, Zorbas H (Hrsg) (1998) Bioanalytik. Spektram Akademischer Verlag, Heidelberg, S 223–235Google Scholar
  142. Watson JD, Gilman M, Witkowski J, Zoller M (1993) Rekombinierte DNA. Spektrum Akademischer Verlag, Heidelberg Berlin OxfordGoogle Scholar
  143. Rifai N, Warnick GR, Dominiczak MH (2000) Handbook of Lipoprotein Testing. 2nd edn. AACC Press, Washington DCGoogle Scholar
  144. Warnick GR, M Nauck, N Rifai (2001) Evolution of methods for measurement of HDL-cholesterol: from ultra-centrifugation to homogeneous assays. Clin Chem 47:1579–1596PubMedGoogle Scholar
  145. Sugiuchi H, Uji Y, Okabe H et al (1995) Direct measurement of high-density lipoprotein cholesterol in serum with polyethylene glycol-modified enzymes and sulfated alpha-cydodextrin. Clin Chem 41:717–723PubMedGoogle Scholar
  146. Rifai N, Warnick GR, Dominiczak MH (2000) Handbook of Lipoprotein Testing. 2nd edn. AACC Press, Washington DCGoogle Scholar
  147. Hafner L, Hoff P (1977) Genetik. Hermann Schroedel Verlag, Hannover Dortmund Darmstadt BerlinGoogle Scholar
  148. Heimpel H, Prümmer O (1991) Bedeutung und Effizienz der Blutzelldiagnostik. In: Boll I, Heller S (Hrsg) Praktische Blutzelldiagnostik. Springer-Verlag, Berlin Heidelberg New York, S 26Google Scholar
  149. Saiki RK, Scharf SJ, Faloona F et al (1985) Enzymatic Amplification of Beta-Globin Sequences and Restriction Site Analysis for Diagnosis of Sickle Cell Anemia. Science 230:1350–1354PubMedGoogle Scholar
  150. Lottspeich F, Zorbas H (1998) Bioanalytik. Spektrum Akademischer Verlag, Heidelberg BerlinGoogle Scholar
  151. Begemann H, Begemann M (1997) Praktische Hamatologie. 10. Aufl. Georg Thieme Verlag, Stuttgart, S 117–118Google Scholar
  152. Doss M (1998) Porphyrie. In: Thomas L (Hrsg) Labor und Diagnose. 5. Aufl. TH Books, Frankfurt/MainGoogle Scholar
  153. Loffler G, Petrides PE (1997) Biochemie und Pathobiochemie. 5. Aufl. Springer-Verlag, Berlin Heidelberg New YorkGoogle Scholar
  154. Anderson PM, Desnick RJ (1982) Porphobili-nogen Deaminase: Methods and Principles of the Enzymatic Assay. Enzyme 28:146–157PubMedGoogle Scholar
  155. Gross U, Jacob K, Frank M, Doss MO (1997) Haem Precursors and Porphobilinogen Deaminase in Erythrocytes and Lymphocytes of Patients with Acute Intermittent Porphyria. Cell Mol Biol (Noisy-le-grand) 43:29–35Google Scholar
  156. Doss MO (1998) Porphyrie. In: Thomas H (Hrsg) Labor und Diagnose. 5. Aufl. TH Books, Frankfurt/MainGoogle Scholar
  157. Doss MO (2000) Porphyrie. In: Thomas L (Hrsg) Labor und Diagnose. Indication und Bewertung von Laborbefunden für die Medizinische Diagnostik. TH Books, Frankfurt/Main, S 458–474Google Scholar
  158. Bickers DR, Frank J (2003) The porphyrias. In: Freedberg IM, Eisen AZ, Wolff K et al (eds) Dermatology in General Medicine. 6. Aufl. McGraw Hill, New York, pp 1435–1466Google Scholar
  159. Hilgers R-D, Bauer P, Scheiber V (2002) Ein-führung in die Medizinische Statistik. Springer-Verlag, Berlin Heidelberg New YorkGoogle Scholar
  160. Wisser H, Bertsch T (2005) Aussage und Nut-zen von Laborergebnissen. In: Guder WG, Nolte J (Hrsg) Das Laborbuch für Klinik und Praxis. Elsevier, Urban und Fischer, München, S 21–38Google Scholar
  161. Latscha HP, Linti GW, Klein HA (2004) Analytische Chemie. Chemie-Basiswissen III. Springer-Verlag, Berlin Heidelberg New YorkGoogle Scholar
  162. Näser KH, Peschel G (1986) Physikalisch-chemische Meßmethoden. Verlag fur Grundstoffindustrie, LeipzigGoogle Scholar
  163. Schiittig R, Meißner D (1993) Die computergestutzte potentiometrische Strippinganalyse-eine Möglichkeit zur Spurenelementanalytik im klinischen Labor. In: Dörner K (Hrsg) Akute und chronische Toxizität von Spurenelementen. Wissenschaftliche Verlagsgesellschaft, Stuttgart, S 55–59Google Scholar
  164. Hilgers R-D, Bauer P, Scheiber V (2002) Einführung in die Medizinische Statistik. Springer-Verlag, Berlin Heidelberg New YorkGoogle Scholar
  165. Hutchinson DR, Halliwell RP, Smith MG et al (1981) Serum “nprealbumin” as an index of liver function in human hepatobiliary disease, din Chim Acta 114:69–74Google Scholar
  166. Guder WG (2005) Die Qualität labormedizinischer Untersuchungen in der präanalytischen und analytischen Phase. In: Guder WG, Nolte J (Hrsg) Das Laborbuch für Klinik und Praxis. Elsevier, Urban und Fischer, Munchen, S 1–20Google Scholar
  167. World Health Organization (2002) Use of Anticoagulants in Diagnostic Laboratory Investigations. Geneva, unter whqlibdoc.who.initWHO/DIL/Lab/99.1Rev.2Google Scholar
  168. Guder WG, Narayanan S, Wisser H, Zawta B (2000) Proben zwischen Patient und Labor. Der Einfluss präanalytischer Faktoren auf die Qualität von Laboratoriumsbefunden. 2. Aufl. GIT VerlagGoogle Scholar
  169. Darmstadt (2005) Die Qualität diagnostischer Proben. Empfehlungen der Arbeitsgruppe Präanalytik der Deutschen Vereinten Gesellschaft für Klinische Chemie und Laboratoriumsmedizin. 5. Aufl. www.diagnosticsample.com
  170. Bonini P, Plebani M, Ceriotti F, Rubolli F (2002) Errors in Laboratory Medicine, din Chem 48:691-698 DIN EN ISO 15185 (1999) Qualitätsmanagement im medizinischen Laboratorium. Beuth-Verlag, Berlin. J Lab Med 23:437–62Google Scholar
  171. (2003) Entscheidungsgrenzen DIN 58985.Beuth-Verlag, BerlinGoogle Scholar
  172. Kitchens CS (2002) The Contact System. Arch Pathol Lab Med 126:1382–1386PubMedGoogle Scholar
  173. Stockmann W et al (1993) Criteria of practicability. In: Haeckel R et al (eds) Evaluation Methods in Laboratory Medicine. VCH, Weinheim, S 185–201Google Scholar
  174. Thomas L (Hrsg) (2005) Labor und Diagnose. Indication und Bewertung von Laborbefunden für die medizinische Diagnostik. TH-Books, Frankfurt/MainGoogle Scholar
  175. Hilgers R-D, Bauer P, Scheiber M (2002) Einführung in die Medizinische Statistik. Springer-Verlag, Berlin Heidelberg New YorkGoogle Scholar
  176. Rieder H-J (Hrsg) Lexikon des Arztrechts. Loseblattwerk. CF Müller, HeidelbergGoogle Scholar
  177. Lottspeich F, Zorbas H (Hrsg) (1998) Bioanalytik. Spektrum Akademischer Verlag, Heidelberg, S 75–87Google Scholar
  178. Lottspeich F, Zorbas H (eds) (1998) Bioanalytik. Spektrum Akademischer Verlag, Heidelberg, pp 75–87Google Scholar
  179. (1987) Begriffe der Qualitätssicherheit und Statistik. DIN 55 350, Teil 13, 2.1.2. Beuth-Verlag, BerlinGoogle Scholar
  180. (1994) Internationales Wörterbuch der Metrologie. S 2.35. Beuth-Verlag, BerlinGoogle Scholar
  181. Qualitätskontrolle im Medizinischen Laboratorium von A bis Z-Ein Leitfaden in Schlagworten, 2. Aufl. Behring DiagnostikaGoogle Scholar
  182. Baliff JP, Mooney RA (2003) New Developments in Prenatal Screening for Down Syndrome. Am J Clin Pathol 120(Suppl):14–24Google Scholar
  183. Qin QP, Kokkola S, Lund J et al (2005) Molecular Distinction of Circulation Pregnancy-Associated Plasma Protein A in Myocardial Infarcation and Pregnancy. Clin Chem 51:75–83PubMedGoogle Scholar
  184. Nerl C (1993) Normale Zellverteilung im peripheren Blut. In: Begemann H, Rastetter J (Hrsg) Klinische Hämatologie. 4. Aufl. Georg Thieme Verlag, Stuttgart, S 7Google Scholar
  185. (1994) Internationales Wörterbuch der Metrologie. 2. Aufl. Beuth-Verlag, BerlinGoogle Scholar
  186. (2003) Medizinische Laboratorien. Besondere Anforderungen an die Qualität und Kompetenz. ISO EN DIN 15189. Beuth-Verlag, BerlinGoogle Scholar
  187. Ibelgaufts H (1993) Gentechnologie von A bis Z.VCH,WeinheimGoogle Scholar
  188. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular Cloning-A Laboratory Manual. Cold Spring Harbor Labroatory Press, New YorkGoogle Scholar
  189. Hannak D, Kiilpmann WR, Hallbach J (2002) Antiepileptika. In: Kulpmann WR (Hrsg) Klinisch-toxi-kologische Analytik. Wiley-VCH, Weinheim, S 225–236Google Scholar
  190. (2003) Medizinische Laboratorien. Besondere Anforderungen an die Qualität und Kompetenz. ISO EN DIN 15 189:2003,3,14. Beuth-Verlag, BerlinGoogle Scholar
  191. NCCLS (2000) Specimen Collection. Procedures for the Collection of Diagnostic Specimen. Wayne PA, SC2-LGoogle Scholar
  192. Godolphin W, Bodtker K, Wilson L (1992) Simulation Modelling: A Tool to Help Predict the Impact of Automation in Clinical Laboratories. Lab Robot Autom 4:249–255Google Scholar
  193. Guder WG, Narayanan S, Wisser H, Zawta B (2000) Proben zwischen Patient und Labor. 2. Aufl. GIT Verlag, DarmstadtGoogle Scholar
  194. Bock R (2001) Handbuch der analytisch-che-mischen Aufschlussmethoden. Wiley-VCH, WeinheimGoogle Scholar
  195. König H, Schmoldt A (2002) Antiarrhythmika. In: Kulpmann WR (Hrsg) Klinisch-toxikologische Analytik. Wiley-VCH, Weinheim, S 197–224Google Scholar
  196. Meisner M (2002) Pathobiochemistry and Clinical Use of Procaldtonin. din Chim Acta 323:17–29Google Scholar
  197. Theml H, Diem H, Haferlach T (2002) Taschenatlas der Hamatologie, 5. Aufl. Georg Thieme Verlag, Stuttgart, S 30–31Google Scholar
  198. Stieber P (2005) ProGRP. In: Thomas L (Hrsg) Labor und Diagnose, 6. Aufl. TH-Books, Frankfurt/Main, S 1338–1341Google Scholar
  199. Diamandis E, Fritsche HA, Lilja H et al (2002) Tumormarkers. Physiology, pathobiology, technology, and clinical applications. 1st edn. AACC Press, Washington DCGoogle Scholar
  200. Wood P, Groom G, Moore A et al (1985) Progesterone assays: guidelines for the provision of a clinical biochemistry service. Ann Clin Biochem 22(1):1–24PubMedGoogle Scholar
  201. Abdulla U, Diver MJ, Hipkin LJ et al (1983) Plasma progesterone levels as an index of ovulation. Br J Obstet Gynaecol 90(6):543–548PubMedGoogle Scholar
  202. Levy MJ, Smotrich DB, Widra EA et al (1995) The predictive value of serum progesterone and 17-OH progesterone levels on in vitro fertilization outcome. J Assist Reprod Genet 12(3):161–166PubMedGoogle Scholar
  203. (2003) Brockhaus Computer und Informationstechnologie. Bibliographisches Institut & F.A. Brockhaus Mannheim, LeipzigGoogle Scholar
  204. Guschhausen-Denker G, Deitenbeck D (Hrsg) (1995) Sicherheit in der Gentechnik, Handbuch fur Projektleiter und Mitarbeiter in gentechnischen Anlagen. Ed. Temmen, BremenGoogle Scholar
  205. Plebani M, Burlina A (1991) Biochemical markers of hepatic fibrosis. Clin Biochem 24:219–239PubMedGoogle Scholar
  206. Wiedemann G, Jonetz-Mentzel L (1993) Establishment of Reference Ranges for Prolactin in Neonates, Infants, Children and Adolescents. Eur J din Chem din Biochem 31:447–451Google Scholar
  207. Gassier N, Peuschel T, Pankau R (2000) Pediatric Reference Values of Estradiol, Testosterone, Lutropin, Follitropin and Prolactin. din Lab 46:553–560Google Scholar
  208. Kuutti-Savolainen ER, Risteli J, Miettinen TA et al (1979) Collagen biosynthesis enzymes in serum and hepatic tissue in liver disease. Eur J Clin Invest 9:89–95PubMedGoogle Scholar
  209. Bennett J, Catovsky D, Daniel MT et al (1989) Proposals for the classification of chronic (mature) B and T lymphoid leukaemias. J Clin Pathol 42:567–584PubMedGoogle Scholar
  210. Boll I (1991) Knochenmarkzytologie. In: Boll I, Heller S (Hrsg) Praktische Blutzelldiagnostik. SpringerVerlag, Berlin Heidelberg New York, S 292–293Google Scholar
  211. Löffler H, Rastetter J (1999) Atlas der klinischen Hämatologie. 5. Aufl. Springer-Verlag, Berlin Heidelberg New York, S 52–54Google Scholar
  212. Boll I (1991)Knodienmark-Zytologie. In: BollGoogle Scholar
  213. I, Heller S (Hrsg) Praktische Blutzelldiagnostik. SpringerVerlag, Berlin Heidelberg New York, S 287–290Google Scholar
  214. McCullough PA, Sandberg KR (2003) Sorting out the evidence on natriuretic peptides. Rev Cardiovasc Med 4(suppl 4):S13–S19PubMedGoogle Scholar
  215. Levin ER, Gardner DG, Samson WK (1998) Natriuretic peptides. N Engl J Med 339:321–328PubMedGoogle Scholar
  216. König H, Schmoldt A (2002) Antiarrrhythmika. In: Külpmann WR (Hrsg) Klinisch-toxikologische Analytik. Wiley-VCH, Weinheim, S 197–224Google Scholar
  217. Blau N, Duran M, Blaskovics ME et al (eds) (2001) Physician’s Guide to the Laboratory Diagnosis of Metabolic Diseases. 2nd edn. Springer-Verlag, Berlin Heidelberg New YorkGoogle Scholar
  218. Semjonow A, Lamerz R (2005) PSA. In: Thomas L (Hrsg) Labor und Diagnose. 6. Aufl. TH-Books, Frankfurt/Main, S 1342–1351Google Scholar
  219. Diamandis E, Fritsche HA, Lilja H et al (2002) Tumor markers. Physiology, pathobiology, technology, and clinical applications. 1st edn. AACC Press, Washington DCGoogle Scholar
  220. Semjonow A, Lamerz R (2005) PSA. In: Thomas L (Hrsg) Labor und Diagnose. 6. Aufl.TH-Books, Frankfurt/Main, S 1342–1351Google Scholar
  221. Diamandis E, Fritsche HA, Lilja H et al (2002) Tumor markers. Physiology, pathobiology, technology, and clinical applications. 1st edn. AACC Press, Washington DCGoogle Scholar
  222. Maupin-Furlow JA, Gil MA, Karadzic IM et al (2004) Proteasomes: Perspectives from the Archaea. Front Biosci 9:1743–2758PubMedGoogle Scholar
  223. Adams J (2004) The Proteasome: A Suitable Antineoplastic Target. Nat Rev Cancer 4:349–360PubMedGoogle Scholar
  224. Aguzzi F, Whicher JT, Chir B, Johnson AM (1996) Protein Metabolism in RF Ritchie, Olga Novolotskaia. Serum Proteins in Clinical Medicine 1:4.0-1 bis 4.0-9Google Scholar
  225. ZehnderR,Köchli HP (1994) Proteine im Urin. In: Colombo JP (Hrsg) Klinisch chemische Urindiagnostik. Rotkreuz Labolife, S 197–222Google Scholar
  226. Hofrnann W, Schmidt D, Guder WG (1991) Die Urineiweißbestimmung-Versuch einer kritischen Standortbestimmung. Lab Med 15:113–117Google Scholar
  227. Orsoneau JL, Douet P, Massoubre C et al (1989) An Improved Pyrogallol Red-Molybdat Method for Determining Total Urinary Protein, din Chem 35:2233–2236Google Scholar
  228. Regeniter A, Siede H, Scholer A (2003) Urindiagnostik bei Nierenerkrankungen. Eine Übersicht. labmed Jan:7–12Google Scholar
  229. Esmon CT (2001) Protein C, Protein S, and Thrombomodulin. In: Colman RW, Hirsh J, Marder VJet al (eds) Hemostasis and Thrombosis. Lippincott Williams & Wilkins, Philadelphia, pp 335–353Google Scholar
  230. Esmon CT (2003) The Protein C Pathway. Chest 124:26S–32SPubMedGoogle Scholar
  231. Barthels M, von Depka M (2003) Das Gerinnungskompendium. Georg Thieme Verlag, Stuttgart New YorkGoogle Scholar
  232. Kraus M (1998) The Anticoagulant Potential of the Protein C System in Hereditary and Acquired Thrombophilia Pathomechanism and New Tools for Assessing its Clinical Relevance. Sem Thromb Hemost 24:337–357Google Scholar
  233. Yang L, Manithody C, Walston TD et al (2003) Thrombomodulin Enhances the Reactivity of Thrombin with Protein C Inhibitor by Providing both a Binding Site for the Serpin and Allosterically Modulating the Activity of Thrombin. J Biol Chem 278:37465–37470PubMedGoogle Scholar
  234. Chitolie A, Lawrie AS, Mackie IJ et al (2001) The Impact of Oral Anticoagulant Therapy, Factor VIII Level and Quality of Factor V-Deficient Plasma on Three Commercial Methods for Activated Protein C Resisteance. Blood Coagulation and Fibrinolysis 12:179–186PubMedGoogle Scholar
  235. Esmon CT (2001) Protein C, Protein S, and Thrombomodulin. In: Colman RW, Hirsh J, Marder VJ (eds) Hemostasis and Thrombosis. Lippincott Williams & Wilkins, Philadelphia, pp 335–353Google Scholar
  236. Rezende SM, Simmonds RE, Lane DA (2004) Coagulation, Inflammation, and Apoptosis: Different Roles for Protein S and the Protein S-C4b Binding Protein Complex Blood 103:1192–1201Google Scholar
  237. Barthels M, von Depka M (2003) Das Gerinnungskompendium. Georg Thieme Verlag, Stuttgart New YorkGoogle Scholar
  238. Forastiero RR, Martinuzzo ME, Lu L, Broze GJ (2003) Autoimmune Antiphospholipid Antibodies impair the Inhibition of Activated Factor X by Protein Z/Protein Z-Dependent Protease Inhibitor. J Thromb Haemost 1:1764–1770PubMedGoogle Scholar
  239. Broze GJ Jr (2001) Protein Z-Dependent Regulation of Coagulation. Thromb Haemost 86:8–13PubMedGoogle Scholar
  240. Tabatabai A, Fiehler R, Broze GJ Jr (2001) Protein Z Circulates in Plasma in a Complex with Protein ZDependent Proteinase Inhibitor. Thromb Haemost 85:655–660PubMedGoogle Scholar
  241. Hagen EC, Ballieux BE, van Es LA et al (1993) Antineutrophil cytoplasmic autoantibodies: a review of the antigens involved, the assays, and the clinical and possible pathogenetic consequences. Blood 81:1996–2002PubMedGoogle Scholar
  242. van der Woude FJ, Rasmussen N, Lobatto S et al (1985) Autoantibodies against neutrophils and monocytes: tool for diagnosis and marker of disease activity in Wegener’s granulomatosis. Lancet:425–429Google Scholar
  243. Greiling H, Gressner AM (1994) Lehrbuch der Klinischen Chemie und Pathobiochemie. 3. Aufl. Schattauer Verlag, Stuttgart, S 231–232;1271-1272Google Scholar
  244. Watson KR, Wild G, Smith S (1989) Nafamostat to Stabilise Plasma Sample Taken for Complement Measurements. Lancet 1:896–897Google Scholar
  245. Narayanan S (1987) Protection of Peptidic Substrates by Protease Inhibitors. Biochim Clin 11:954–956Google Scholar
  246. Perrault J, Markowitz H (1984) Protein-losing gastroenteropathy and the intestinal clearance of serum alpha-1-antitrypsin. Mayo Clin Proc 59:278–279PubMedGoogle Scholar
  247. Boege F, Deubel M, Schwarte B et al (1989) Eine schnelleund einfache Methode zur nephelometrischen Bestimmung des fakalen Alphal-Antitrypsins. Lab med 13:254–258Google Scholar
  248. Hirsh J, Dalen J, Anderson DR et al (2001) Oral Anticoagulants: Mechanism of Action, Clinical Effectiveness, and Optimal Therapeutic Range. Chest 119:8S–21SPubMedGoogle Scholar
  249. Guder WG, Hofmann W (2003) Niere und ableitende Harnwege. In: Renz H (Hrsg) Integrative Klinische Chemie und Laboratoriumsmedizin. W. de Grayter, Berlin, S 465–496Google Scholar
  250. Ibelgaufts H (1993) Gentechnologie von A bis Z. VCH, WeinheimGoogle Scholar
  251. Leybold K, Grabener E(1976)Praxis-Laboratorium. 7. Aufl,. StuttgartGoogle Scholar
  252. Thieme Keller H (1986) Klinisch-chemische Labordiagnostik fürdie Praxis. Stuttgart, ThiemeGoogle Scholar
  253. Löffier G, Petrides PE (1998) Biochemie und Pathobiochemie. 6. Aufl. Springer-Verlag, Berlin Heidelberg New YorkGoogle Scholar
  254. Hofmann W, Rossmüller B, Guder WG, Edel HH (1992) A New Strategy for Characterizing Proteinuria and Haematuria from a Single Pattern of Defined Proteins in Urine. Eur J Clin Chem Clin Biochem 30:707–712PubMedGoogle Scholar
  255. Guder WG, Ivandic M, Hofmann W (1998) Physiopathology of Proteinuria and Laboratory Diagnostic Strategy Based on Single Protein Analysis. Clin Chem Lab Med 36:935–939PubMedGoogle Scholar
  256. Guder WG, Hofmann W (2004) Challenges in Urine Analysis and Glomerular Filtration Measurement for Early Detection of Kidney Diseases. Farm vestn 55:285–286Google Scholar
  257. Hofmann W, Garbrecht M, Bradwell AR, Guder WG (2004) A New Concept for Detection of Bence Jones Proteinuria in Patients with Monoclonal Gammopathy. Clin Lab 50:181–185PubMedGoogle Scholar
  258. Fosang AJ, Hardingham TE (1996) Matrix Proteoglycans. In: Comper WD (ed) Extracellular Matrix. Vol 2: Molecular compounds and interactions. Harwood Publishers, AmsterdamGoogle Scholar
  259. Park PW, Reizes O, Bernfield M(2000) Cell surface heparan sulfate proteoglycans: selective regulators of ligand receptor encounters. J Biol Chem 275:29923–29926PubMedGoogle Scholar
  260. Forsberg E, Kjellen L (2001) Heparan sulfate: lessons from knockout mice. J Clin Invest 108:175–180PubMedGoogle Scholar
  261. Westermeier R, Loyland S, Asbury R (2002) Proteomics Technology. J Clin Ligand Ass 25:242–252Google Scholar
  262. Schrattenholz A (Hrsg) (2001) Methoden der Proteomforschung. Molekulare Analyse der Proteinexpression. Spektrum Akademischer Verlag, HeidelbergGoogle Scholar
  263. Jenny NS, Mann KG (2001) Thrombin. In: Colman RW, Hirsh J, Marder VJ et al (eds) Hemostasis and Thrombosis. Lippincott Williams & Wilkins, Philadelphia, pp 171–189Google Scholar
  264. Barthels M, von Depka M (2003) Das Gerinnungskompendium. Georg Thieme Verlag, Stuttgart New YorkGoogle Scholar
  265. Atsumi T, Amengual O, Yasuda S et al (2004) Antiprothrombin antibodies-are they worth assaying? Thromb Res 114:533–538PubMedGoogle Scholar
  266. Calatzis A, Spannagl M, Gempeler-Messina P et al (2000) The Prothrombinase Induced Clotting Test: New Technique for Monitoring of Anticoagulantsl Haemostasis 30:172–174Google Scholar
  267. Seligsohn U, Lubetsky A (2001) Genetic Susceptibility to Venous Thrombosis. N Engl J Med 344:1222–1231PubMedGoogle Scholar
  268. Zotz RB, Gerhardt A, Scharf RE (2003) Inherited Thrombophilia and Gestational Venous Thromboembolism. Best Pract Res Clin Haematol 16:243–259PubMedGoogle Scholar
  269. Goerz G, Link-Mannhardt A, Bolsen K et al (1995) Porphyrin Concentrations in Various Human Tissues. Exp Dermatol 4:218–220PubMedGoogle Scholar
  270. Labbe RF (1977) History and Background of Protoporphyrin Testing. Clin Chem 23:256–259PubMedGoogle Scholar
  271. Bray D, Lay S (1997) Computer-based analysis of the binding steps in protein complex formation. Proc Wat L Acad Sci USA 94; 13493–13498, BiochemistryGoogle Scholar
  272. Hilgers R-D, Bauer P, Scheiber V (2002) Einführung in die Medizinische Statistik. Springer-Verlag, Berlin Heidelberg New YorkGoogle Scholar
  273. Working group on enzymes (1992) Proposal of standard methods for the determination of enzyme catalytic concentrations in serum and plasma at 37°C II. Cholin esterase (acylcholine acylhydrolase, EC 3.1.1.8). Eur J Clin Chem Clin Biochem 30:163–170Google Scholar
  274. Boll I (1991) Knochenmark-Zytologoie. In: Boll I, Heller S (Hrsg) Praktische Blutzelldiagnostik. Springer-Verlag, Berlin Heidelberg New York, S 294Google Scholar
  275. Lawson N, Lang T, Broughton A et al (2002) Creatinine assays: time for action? Ann din Biochem 39:599–602Google Scholar
  276. Theml H, Diem H, Haferlach T (2002) Taschenatlas der Hämatologie. 5. Aufl. Georg Thieme Verlag, Stuttgart, S 40–41Google Scholar
  277. Käferstein H, Sticht G, von Meyer L et al (2002) Psilocybin/Psilocin. In: Külpmann WR (Hrsg) Klinischtoxikologische Analytik. Wiley-VCH, Weinheim, S 398–402Google Scholar
  278. Hapke H-J (1999) Ableitung von Grenzwerten (Umweltstandards)-Lebensmittel. In: Wichmann HE, Schlipköter HW, Fülgraff G (Hrsg) Handbuch der Umweltmedizin. ecomed Verlagsgesellschaft, Landsberg/Lech, III-1.3.6Google Scholar
  279. Lottspeich F, Zorbas H (1998) Bioanalytik. Spektrum Akademischer Verlag, Heidelberg BerlinGoogle Scholar
  280. Schwartz DC, Cantor CR (1984) Separation of Yeast Chromosomal-Sized DNAs by Pulsed Field Gradient Gel Electrophoresis. Cell 37:67–75PubMedGoogle Scholar
  281. Rasch D (1988) Biometrisches Wörterbuch. Verlag Harri Deutsch, Frankfurt am MainGoogle Scholar
  282. Lesch M, Nyhan WL (1964) A Familial Disorder of Uric Acid Metabolism and Central Nervous System Dysfunction. Am J Med 36:561–570PubMedGoogle Scholar
  283. Simmonds HA, Duley JA, Davies PM (1991) Analysis of purines and pyrimidines in blood, urine and other physiological fluids. In: Homines FA (ed) Techniques in Diagnostic Human Biochemical Genetics: A Laboratory Manual. Wiley-Liss, New York, pp 397–424Google Scholar
  284. Van den Berghe G, Vincent MF, Jaeken J (1997) Inborn Errors of the Purine Nucleotide Cycle: Adenylosuccinase Deficiency. J Inherit Metab Dis 20:193–202PubMedGoogle Scholar
  285. Hallmann L (1980) Klinische Chemie und Mikroskopie. 11. Aufl. Georg Thieme Verlag, Stuttgart New YorkGoogle Scholar
  286. Hallmann L (1980) Klinische Chemie und Mikroskopie. 11. Aufl. Georg Thieme Verlag, Stuttgart New YorkGoogle Scholar
  287. Geldmacher-von Mallinckrodt M, Degel F, Daldrup T et al (2002) Pestizide. In: Külpmann WR (Hrsg) Klinisch-toxikologische Analytik. Wiley-VCH, Weinheim, S 451–499Google Scholar
  288. Löffler M, Fairbanks LD, Zameitat E, Marinaki AM, Simmonda HA (2005) Pyrimidine pathways in health and disease. Trend Molec Med 11:430–437Google Scholar
  289. Van den Berghe G, Vincent MF, Marie S (2000) Disorders of Purine and Pyrimidine Metabolism. In: Fernandes J, Saudubray J-M, van den Berghe G (eds) Inborn Metabolic Diseases: Diagnosis and Treatment. 3rd edn. Springer Verlag, Berlin Heidelberg New York, pp 354–368Google Scholar
  290. Falbe J, Regitz M (1992) Römpp Chemie Lexikon. Georg Thieme Verlag, Stuttgart New YorkGoogle Scholar
  291. Ronaghi M, Karamohamed S, Pettersson B, Uhlen M, Nyren P (1996) Real-time DNA sequencing using detection of pyrophosphate release. Anal Biochem 242:84–89PubMedGoogle Scholar
  292. Ronaghi M, Uhlen M, Nyrén P (1998) A sequencing method based on real-time pyrophosphate. Science 281:363–365.PubMedGoogle Scholar
  293. Diamandis E, Fritsche HA, Lilja H et al (2002) Tumor markers. Physiology, pathobiology, technology, and clinical applications. 1st edn. AACC Press, Washington DCGoogle Scholar
  294. Zanella A (2000) Red cell pyruvate kinase deficiency: from genetics to clinical manifestation. Bailliere’s Clinical Haematology 13:57–81PubMedGoogle Scholar

Copyright information

© Springer Medizin Verlag Heidelberg 2007

Authors and Affiliations

  • Axel M. Gressner
    • 1
  • Torsten Arndt
    • 2
  1. 1.Institut für Klinische Chemie und Pathobiochemie -Zentrallaboratorium-Universitätsklinikum der RWTH AachenAachenGermany
  2. 2.Bioscientia Institut für Medizinische Diagnostik GmbHIngelheimGermany

Personalised recommendations