Advertisement

A

  • Axel M. Gressner
  • Torsten Arndt
Chapter
  • 4.2k Downloads

Literatur

  1. Talbot JA, Kane JW, White A (2003) Analytical and clinical aspects of adrenocorticotropin determinations. Ann Clin Biochem 40:453–471PubMedGoogle Scholar
  2. Hinson JP, Kapas S, Smith DM (2000) Adrenomedullin, a multifunctional regulatory peptide. Endocrine Reviews 21:138–167PubMedGoogle Scholar
  3. Cuttitta F, Martinez A(1997) Adrenomedullin. IOS Press, The NetherlandsGoogle Scholar
  4. Wallukat K(2002) The β-adrenergic receptors. Herz 27:683–690Google Scholar
  5. Jahns R, Boivin V, Hein L et al (2004) Direct evidence for a βl-adrenergic receptor-directed autoimmune attack as a cause of idiopathic dilated cardiomyopathy. J Clin Invest 113:1419–1429PubMedGoogle Scholar
  6. Brownlee M (1995) Advanced protein glycosylation in diabetes and aging. Annu Rev Med 46:223–234PubMedGoogle Scholar
  7. Singh R, Barden A, Mori T et al (2001) Advanced glycation end-products: a review. Diabetologia 44:129–146PubMedGoogle Scholar
  8. Takeo K (1987) Affinity electrophoresis. In: Chrambach A, Dunn MJ, Radola BJ (eds) Advances in Electrophoresis. Vol. 1. VCH, WeinheimGoogle Scholar
  9. Shimura K, Kasai K (1987) Affinophoresis in two-dimentional agarose gel electrophoresis specific separation of biomolecules by a moving affinity ligand. Anal Biochem 116:200–206Google Scholar
  10. Ogden RC, Adams DA (1987) Electrophoresis in agarose and acrylamide gels. Meth Enzymol 152:61–87PubMedGoogle Scholar
  11. Le Carrer D (1994) Elektrophorese & Immunfixation von Proteinen. Die Interpretation von Versudisergebnissen mit zahlreichen Trennbeispielen. SA Sebia, ParisGoogle Scholar
  12. Martin R (1996) Elektrophorese von Nudeinsauren. Spektrum Akademischer Verlag, HeidelbergGoogle Scholar
  13. Kiani C, Chen L, Wu Yj et al (2002) Structure and function of aggrecan. Cell Res 12:19–32PubMedGoogle Scholar
  14. Lark MW, Bayne EK, Flanagan J et al (1997) Aggrecan degradition la human cartilage. Evidence for both matrix metalloproteinase and aggrecanase activity in normal, osteoarthrotic and rheumatoid joints. J Clin Invest 100:93–106PubMedGoogle Scholar
  15. Fischer DC, Kolbe-Busch S, Stöcker G et al (1994) Development of enzyme immuno assays for keratan sulphate-and core-protein epitopes of the large aggregating proteogiycan from human articular cartilage. Eur J Clin Clin Biochem 32:285–291Google Scholar
  16. Malfait AM, Lui RQ, Ijiri K et al (2002) Inhibition of ADAM-TS4 and ADAM-TS5 prevents aggrecan degradation in osteoarthritic cartilage. J Biol Chem 277:2201–2208Google Scholar
  17. Lark MW, Bayne EK, Flanagan J et al (1997) Aggrecan degradation in human cartilage. Evidence for both matrix metalloproteinase and aggrecanase activity in normal, osteoarthrotic, and rheumatoid joints.J Clin Invest 100:93–106PubMedGoogle Scholar
  18. Moll J, Barzaghi P, Lin S, Bezakova G, Lachmuller H, Engvall E, Muller U, Ruegg MA (2001) An agrin minigene rescues dystrophic symptoms in a mouse model for congenital muscular dystrophy. Nature 413:302–307PubMedGoogle Scholar
  19. Raats CJ, Bakker MA, Hoch W, Tamboer WP, Groffen AJ, van den Heuvel LP, Berden JH, van den Born J (1998) Differential expression of agrin in renal basement membranes as revealed by domain-specific antibodies. J Biol Chem 273:17832–17838PubMedGoogle Scholar
  20. Schütz E, Schaefer RM, Heidbreder E et al (1985) Effect of diuresis on urinary erythrocyte morphology in glomerulonephritis. Klin Wchschr 63:575–577Google Scholar
  21. Köhler H, Wandel E, Brunck B (1991) Acanthocyturia-A Characteristic Marker of Glomerular Bleeding. Kidney Int 40:115–120PubMedGoogle Scholar
  22. Gabay C, Kushner I (1999) Acute-Phase Proteins and other systemic responses to inflammation. N Engl J Med 340:448–454PubMedGoogle Scholar
  23. Schumann G et al (2002) IFCC Primary Reference Procedures for the Measurement of Catalytic Activity Concentrations of Enzymes at 37 °C, Part 4: Reference Procedure for the Measurement of Catalytic Concentration of Alanine Aminotransferase. Clin Chem Lab Med 40:718–724PubMedGoogle Scholar
  24. Doumas BT, Peters T Jr (1997) Serum and urine albumin: a progress report on their measurement and cli-nical significance. Clin Chim Acta 258:3–20 The Albumin Website: http://www.albumin.org PubMedGoogle Scholar
  25. Schena FP (1994) Domenico Cotugno and his Interest in Proteinuria. Am J Nephrol 14:325–329PubMedGoogle Scholar
  26. Osicka TM, Comper WD (2004) Characterization of Im-munochemically Nonreactive Urinary Albumin. Clin Chem 50:2286–2291PubMedGoogle Scholar
  27. Kreja GJ, Horica C, Benes I, Blum AL (1975) Modified 51Cr-Chromium-Albumin Test for the differen tial diagnosis of exudative gastropathies and enteropa-thies. Schweiz Med Wochenschr 105:1135–1137Google Scholar
  28. Alder A (1939) Über konstitutionell bedingte Granulationsveränderungen der Leukocyten. Dtsch Arch Klin Med 183:372–378Google Scholar
  29. Löffler H, Rastetter J (1999) Atlas der klinischen Hämato-logie. 5. Aufl. Springer-Verlag, Berlin Heidelberg New York, S 44–46Google Scholar
  30. Ali M, Rellos P, Cox TM (1998) Hereditary fructose intolerance. J Med Genet 35:353–365PubMedGoogle Scholar
  31. Hubl W, Thomas L (2005) Renin-Angiotensin-Aldosteron-System. In: Thomas L (Hrsg.) Labor und Diagnose. 6. Aufl. TH-Books, Frankfurt/Main, S 1406–1424Google Scholar
  32. Perschel FH, Schemer R, Seiler L et al (2004) Rapid Screening Test for Primary Hyperaldosteronism: Ratio of Plasma Aldosterone to Renin Concentration De-termined by Fully Automated Chemiluminescence Im-munoassays. Clin Chem 50:1650–1655PubMedGoogle Scholar
  33. Schwartz GL, Chapman AB, Boerwinkle E et al (2002) Screening for primary aldosteronism: Implications of an increased plasma aldosterone/renin ratio. Clin Chem 48:1919–1923PubMedGoogle Scholar
  34. Huber H, Pastner D, Gabl F (1972) Laboratori-umadiagnose hämatologischer und immunologischer Er-krankungen. Springer-Verlag, Berlin Heidelberg New York, S 216–218Google Scholar
  35. Peters JP, van Slyke DD (1932) Quantitative Clinical Chemistry. II. Methods. 1st edn. Williams and Wilkins, BaltimoreGoogle Scholar
  36. Foster GT, Vaziri ND, Sassoons CS (2001) Respiratory Alkalosis. Respiratory Care 46:384–391PubMedGoogle Scholar
  37. Guder WG, Narayanan S, Wisser H et al (2000) Proben zwischen Patient und Labor. 2. Aufl. GIT Verlag, DarmstadtGoogle Scholar
  38. Young DS (1997) Effects of Preanalytical Variables on Clincal Laboratory Tests. 2nd edn. AACC Press, Washing-ton DCGoogle Scholar
  39. Ferguson RA, Goldberg DM (1997) Genetic markers of alcohol abuse. Clin Chim Acta 257:199–250PubMedGoogle Scholar
  40. Arndt T, Gressner AM, Kropf J (1994)Labordi-agnostik und Kontrolle des Alkoholabusus-ein Plädoyer für Carbohydrate-Deficient-Transferrin (CDT), medwelt 45:247–257Google Scholar
  41. Thomas L (Hrsg) (2005) Labor und Diagnose, 6. Aufl. Frankfurt/Main, S 1120fGoogle Scholar
  42. Somos S (1996) Alloalbuminaernia as a curious laboratory finding. Clin Chim Acta 254:73–76PubMedGoogle Scholar
  43. Hafner L, Hoff P (1977) Genetik. Hermann Schroedel Verlag, Hannover Dortmund Darmstadt BerlinGoogle Scholar
  44. Hilgers R-D, Bauer P, Scheiber V (2002) Ein-führung in die Medizinische Statistik. Springer-Verlag, Berlin Heidelberg New YorkGoogle Scholar
  45. Elsenhans B (2002) Aluminium. In: Biesalski HK, Köhrle J, Schumann K (Hrsg) Vitamine, Spurenele-mente und Mineralstoffe. Georg Thieme Verlag, Stuttgart New York, S 227–231Google Scholar
  46. Kazazian HH Jr (2004) Mobile Elements: Drivers of Genome Evolution. Science 303:1626–1632PubMedGoogle Scholar
  47. Iizuka M, Mashiyama S, Oshimura M et al (1992) Cloning and Polymerase Chain Reation-Single-Strand Conformation Polymorphism Analysis of Anonimous Alu Repeats on Chromosome 11. Genomics 12:139–146PubMedGoogle Scholar
  48. Löffler G, Petrides PE (1997) Biochemie und Pathobiochemie. 5. Aufl. Springer-Verlag, Berlin Heidelberg New YorkGoogle Scholar
  49. Degel F, Maurer HH (2002) Giftige Pilze. In: Külpmann WR (Hrsg) Klinisch-toxikologische Analytik. Wiley-VCH, Weinheim, S 547–565Google Scholar
  50. Westermeier R (2004) Electrophoresis in Practice. Wiley-VCH, WeinheimGoogle Scholar
  51. Ludewig R (1999) Akute Vergiftungen. Wiss. Verlagagesellschaft, Stuttgart, S100–102Google Scholar
  52. Jaeken J, Jakobs C, Wevers R (2000) Disorders of Neurotransmission. In: Fernandes J, Saudubray J-M, van den Berghe G (eds) Inborn Metabolic Diseases: Diag-nosis and Treatment 3rd edn. Springer-Verlag, Berlin Heidelberg New York, pp 301–311Google Scholar
  53. Roberts E, Frankel S (1950) Gamma-Aminobutyric Acid in Brain: its Formation from Glutamic Add. J Biol Chem 187:55–63PubMedGoogle Scholar
  54. Mauzerall D, Granick S (1956) The Occurrence and Determination of δ-Aminolevulinic Acid and Porp-hobilinogen in Urine. J Biol Chem 219:435–446PubMedGoogle Scholar
  55. Doss MO (2000) Porphyrie, In: Thomas I, (Hrsg) Labor und Diagnose. 5. Aufl. TH Books Verlagsgesellschaft mbH, Frankfurt/Main, S 458–474Google Scholar
  56. Bishop DF, Desnick RJ (eds) (1982) Assays of the Heme Biosynthetic Enzyme. Enzyme 28(2-3): 89–232Google Scholar
  57. Doss MO (2000) Porphyrie. In: Thomas L (Hrsg) Labor und Diagnose. Indikation und Bewertung von Laborbe-funden für die Medizinische Diagnostik. TH-Books, Frankfurt/Main, S 458–474Google Scholar
  58. Bickers DR, Frank J (2003) The Porphyrias. In: Freedberg IM, Eisen AZ, Wolff K et al (eds) Dermatology in General Medicine. 6th edn. McGraw Hill, New York, pp 1435–1466Google Scholar
  59. Bishop DF, Desnick RJ (eds) (1982) Assays of the Heme Biosynthetic Enzymes. Enzyme 28(2–3):89–232Google Scholar
  60. Doss MO (2000) Porphyrie. In: Thomas L (Hrsg) Labor und Diagnose. Indikation und Bewertung von Laborbe-funden für die Medizinische Diagnostik. TH-Books, Frankfort/Main, S 458–474Google Scholar
  61. Bickers DR, Frank J (2003) The porphyrias. In: Freedberg IM, Eisen AZ, Wolff K et al (eds) Dermatology in General Medicine. 6th edn. McGraw Hill, New York, pp 1435–1466Google Scholar
  62. Merkel C, Bolognesi M, Bellon S et al (1992) Aminopyrine Breath Test in the Prognostic Evaluation of Patients with Cirrhosis. Gut 33:836–842PubMedGoogle Scholar
  63. Cooper C, Packer N, Williams K (eds) (2001) Amino Acid Analysis Protocols. Methods its Molecular Biology. Vol 159. Humana Press, Totowa New JerseyGoogle Scholar
  64. Grünert A (2003) Aminosäuren. In: Renz H (Hrsg) Inte-grative Klinische Chemie und Laboratoriumsmedizin. W. de Gruyter, Berlin New York, S 37–44Google Scholar
  65. Stuhlsatz HW (1995) Aminosäuren-Stoffwchsel. In: Greiling H, Gressner AM (Hrsg) Lehrbuch der Klinischen Chemie und Pathobiochemie. 3. Aufl. Schattauer Verlag, Stuttgart, S 261–391Google Scholar
  66. Stuhlsatz HW (1995) Aminosäurenatoffwech-sel. In: Greiling H, Gressner AM (Hrsg) Lehrbuch der Kli-nischen Chemie und Pathobiochemie. 3. Aufl. Schattauer Verlag, StuttgartGoogle Scholar
  67. Schulze A, Lindner M, Kohlmueller D, Olgemoeller K, Mayatepek E, Hoffmann GF (2003) Expanded newborn screening for inborn errors of metabolism by electrospray ionization-tandem mass spectrometry: results, outcome, and implications. Pediatrics 111:1399–1406.PubMedGoogle Scholar
  68. Clemens JD, Herrick MV, Singer FR et al (1997) Evidence that serum NTx (collagen type IN-telopeptides) can act as an immunochemical marker of bone resorption. Clin Chem 43:2058–2063PubMedGoogle Scholar
  69. Hanson DA, Eyre DR (1996) Molecular site specificity of pyridinoline and pyrrole cross-links in type I collagen of human bone. J Biol Chem 271:26508–26516PubMedGoogle Scholar
  70. Ju H-SJ, Lesung S, Brown B et al (1997) Comparison of ana-lytical performance and biological variability of three bone resorption assays. Clin Chem 43:1578–1576Google Scholar
  71. Castell DO (1965) The ammonia tolerance test: An index of portal hypertension. Gastraoenterology 49:539–543Google Scholar
  72. Greiling H, Gressner AM (Hrsg) (1994) Lehr-buch der Klinischen Chemie und Pathobiochemie. 3. Aufl. Schatttauer Verlag, Stuttgart New YorkGoogle Scholar
  73. Thomas L (Hrsg) (2005) Labor und Diagnose. Indikation und Bewertung von Laborbefunden für die me-disinische Diagnostik. TH-Books, Frankfurt/MainGoogle Scholar
  74. Näser K-H, Peschel G (1986) Physikalisch-che-mische Meßmethoden. 4. Aufl. Deutscher Verlag für Grundstoffindustrie, LeipzigGoogle Scholar
  75. Latscha HP, Linti GW, Klein HA (2004) Analytische Che-mie. Chemie-Basiswissen III. Springer-Verlag, Berlin Heidelberg New YorkGoogle Scholar
  76. Allen RC, Graves G, Budowle (1989) Polymera-se Chain Reaction Amplification Products Separated on Rehydratable Polyacrylamide Gels and Stained with Silver. Biotechniques 7:736–744PubMedGoogle Scholar
  77. Badowle B, Chakraborty R, Giusti AM et al (1991) Analysis of the VNTR Locus DISSO by the PCR Followed by High-Resolution PAGE. Am J Hum Genet 48:841–855Google Scholar
  78. Käferstein H, Sticht G, von Meyer L et al (2002) Suchtstoffe. In: Külpmanm WR (Hrsg) Klinisch-toxikologische Analytik. Wiley-VCH, Weinheim, S 402–410Google Scholar
  79. Saiz A, Dalmau J, Butler MH et al (1999) Anti-amphiphysin I antibodies in patients with paraneoplastic neurological disorders associated with small cell lung carcinoma. J Neurol Neurosurg Psychiatry 66:214–217PubMedGoogle Scholar
  80. Zaske D, Cerra FB, Koontz FP (1986) Antibiotics and other anti-infective agents. In: Taylor WJ, Diers Caviness MH (eds) A textbook for the clinical application of therapeutic drag monitoring. Abbott, IrvingGoogle Scholar
  81. Mutschler E (2001) Arzneimittelwirkungen. Lehrbuch der Pharmakologie und Toxikologie. Wissen-schaftliche Verlagagesellschaft mbH, StuttgartGoogle Scholar
  82. Clavé P, Guillaumes S, Blanco J et al (1995) Amylase, Lipase, Pancreatic Isoamylase, and Phospholipase A in Diagnosis of Acute Pancreatitis. Clin Chem 41:1129–1134PubMedGoogle Scholar
  83. Junge W, Wortmann W, Wilke B et al (2001) Development and evaluation of assays for the determination of total and pancreatic amylase at 37 °C according to the principle recommended by the IFCC. Clin Biochem 34:607–615PubMedGoogle Scholar
  84. Hull RL, Westermark GT, Westermark P et al (2004) Islet amyloid: a critical entity in the pathogenesis of type 2 diabetes. J Clin Endocrinol Metab 89:3629–3643PubMedGoogle Scholar
  85. Wolfsdorf JI, Weinstein DA (2003) Glycogen storage diseases. Rev Endocr Metab Disord 4:95–102PubMedGoogle Scholar
  86. Linke RP, Altland K, Ernst J et al (1998) Praktische Hinweise zur Diagnose und Therapie generalisierter Amyloidosen. Dt Ärzbl 95:A2626–A2636Google Scholar
  87. Clark KA, Nilsson MR (2004) Islet amyloid; a complication of islet dysfunction or an aetiological factor in type 2 diabetes? Disbetologia 47:157–169Google Scholar
  88. Röaler N, Wichart I, Jellinger KA (2002) Aktuelle klinisch-neurochemische Diagnostik der Alzheitner-Krankheit. J Lab Med 26:139–148Google Scholar
  89. Haeckel R et al (1995) Prinzipien klinisch-chemischer Methoden. In: Greiling H, Gressner AM (Hrsg) Lehrbuch der Klinischen Chemie und Pathobiochemie. 3. Aufl. Schattauer Verlag, Stuttgart New YorkGoogle Scholar
  90. Kingston HM, Kingston ML (1994) Nomenclature in laboratory robotics and automation. Pure & Appl Chem 66:609–630Google Scholar
  91. Haeckel R (1995) Rationalisierung quantitativer Analysenverfahren. In: Greiling H, Gressner AM (Hrsg) Lehrbuch der Klinischen Chemie und Pathobiochemie. Schattauer Verlag, Stuttgart New YorkGoogle Scholar
  92. Skeggs LT (1957) An automatic method for colorimetric analysis. Am J Clin Path 28:311–322PubMedGoogle Scholar
  93. (2001) Richtlinie der Bundesärztekammer zur Qualitätssicherung quantitativer laboratoriumsmedizinischer Untersuchungen. Dt Ärzteblatt 98:A2747–A2759Google Scholar
  94. Haeckel R, Fischer G, Fischer M et al (1984) Vorschläge zur Definition von Zeitbegriffen. Dt Ges Klin Chem Mitteilungen 14:187–192Google Scholar
  95. Greiling H, Gressner AM (Hrsg) (1995) Lehrbuch der Klinischen Chemie und Pathobiochemie. Schattauer Verlag, Stuttgart New YorkGoogle Scholar
  96. Stamm D, Büttner J (1995) Klinisch-chemische Analytik. In: Greiling H, Gressner AM (Hrsg) Lehrbuch der Klinischen Chemie und Pathobiochemie. 3. Aufl. Schattauer Verlag, Stuttgart, S 6–38Google Scholar
  97. Miller KK, Rosner W, Lee H et al (2004) Measurement of Free Testosterone in Normal Women and Women with Androgen Deficiency: Comparison of Methods. J Clin Endocrinol Metab 89:525–533PubMedGoogle Scholar
  98. Miller KK, Rosner W, Lee H et al (2004) Measurement of free testosterone in normal women and women with androgen deficiency: comparison of methods. J Clin Endocrinol Metab 89:525–533PubMedGoogle Scholar
  99. Castracane VD et al (1999) Androgen parameters in hirsute and normal female patients: is there a role for the free androgen index (FAI)? Clin Chem 45:A80Google Scholar
  100. Burger HG (2002) Androgen Production in Women. Fertil Steril 77:3–5Google Scholar
  101. Cavallo A, Corn C, Bryan GT et al (1979) The Use of Plasma Androstenedione in Monitoring Therapy of Patients with Congenital Adrenal Hyperplasia. J Pediatr 95:33–37PubMedGoogle Scholar
  102. Gladtke E, von Hattingberg HM (1973) Pharmakokinetik. Springer-Verlag, Berlin Heidelberg New YorkGoogle Scholar
  103. Bunting PS, Szalai JP, Katic M (1987) Diagnostic aspects of angiotensin converting enzyme in pulmonary sarcoidosis. Clin Biochem 20:213–219PubMedGoogle Scholar
  104. Arbustini B, Grasso M, Fasani R, Klersy C, Diegoli M, Porcu E, Banchieri N, Fortina P, Danesino C, Specchia G (1995) Angiotensin converting enzyme gene deletion allele is independently and strongly associted with coronary atherosclerosis and myocardial infarction. Brit Heart J 74:584–591PubMedGoogle Scholar
  105. Mattei M-G, Hubert C, Alhenc-Gelas F, Roeckel N, Corvol P, Soubrier F (1989) Angiotensin-I converting enzyme gene is on chromosome 17. Cytogenet Cell Genet 51:1041Google Scholar
  106. Morimatsu H, Rocktaschel J, Bellomo R et al (2003) Comparison of Point-of-Care versus Central Laboratory Measurement of Electrolyte Concentrations on Calculations of the Anion Gap and the Strong Ion Difference. Anesthesiology 98:1077–1084PubMedGoogle Scholar
  107. Koeppen KM, Heller S (1991) Differentialblutbild (panoptische Färbung). In: Boll I, Heller S (Hrsg) Praktische Blutzelldiagnostik, Springer-Verlag, Berlin Heidelberg New York, S 170Google Scholar
  108. Hilgers R-D, Bauer P, Scheiber V (2002) Einführung in die Medizinische Statistik. Springer-Verlag, Berlin Heidelberg New YorkGoogle Scholar
  109. Rand JH, Wu XX, Lapinski R et el (2004) Detection of antibody-mediated reduction of annexin A5 anti-coagulant activity in plasmas of patients with the anti-phospholipid syndrome. Blood 104:2783–2790PubMedGoogle Scholar
  110. Falbe J, Regitz M (Hrsg) (1990) Römpp Chemie Lexikon, Georg Thieme Verlag Stuttgart New YorkGoogle Scholar
  111. Gabay C, Kushner I (1999) Acute-Phase Proteins and other systemic responses to inflammation. N Engl J Med 340:448–454PubMedGoogle Scholar
  112. Mutschler E (2001) Arzneimittelwirkungen. Lehrbuch der Pharmakologie und Toxikologie. Wissen-schaftliche Verlagagesellschaft mbH, StuttgartGoogle Scholar
  113. Mutschler E (2001) Arzneimittelwirkungen. Lehrbuch der Pharmakologie und Toxikologie. Wissenschaftliche Verlagsgesellschaft mbH, Stuttgart www.mikrobio.med.tu-muenchen.de/diagnose/ nachweis/immunreaktion3.html Google Scholar
  114. Moroi Y, Peebles C, Fritzler MJ et al (1980) Autoantibody to centromere (kinetochore) in scleroderma sera. Proc Natl Acad Sci 77:1627–1631PubMedGoogle Scholar
  115. Meurer M, Scharf A, Luderschmidt C et al (1985) Centromere aatibodies and antibodies against Scl-70 nucleoprotein in progressive systemic scleroderma. Diagnostic and prognostic significance. Dtsch Med Wochenschr 110:8–14PubMedGoogle Scholar
  116. Zhang S, Janciauskiene S (2002) Multifunctio-nal capability of proteins: ±-antichymotrypsin and the correlation with Alzheimer’s disease. J Alzheimer’s Disease 4:115–122Google Scholar
  117. Watson JD, Gilman M, Witkowski J, Zoller M (1993) Rekombinierte DNA. Spektrum Akademischer Verlag, Heidelberg Berlin OxfordGoogle Scholar
  118. Degel F, Steimer W, Birkhahn HJ et al (2002) Neuroleptika und Antidepressiva. In: Külpmann WR (Hrsg) Klinisch-toxikologische Analytik Wiley-VCH, Weinheim, S 319–363Google Scholar
  119. Wellhöner HH (1997) Pharmakologie und To-xikologie. 6. Aufl. Spriager-Verlag, Berlin Heidelberg New York, S 179–188Google Scholar
  120. Robertson GL (1994) The Use of Vasopressin Assays in Physiology and Pathophysiology. Semin Nephrol 14:368–383PubMedGoogle Scholar
  121. Robertson GL (2001 ) Antidiuretic Hormone. Normal and Disordered Function. Endocrinol Metab Clin North Am 30:671–694PubMedGoogle Scholar
  122. Cruise JM, Lewis RE (1999) Atlas of Immunology. Springer-Verlag, Berlin Heidelberg New York www.mikrobio.med.tu-muenchen.de/diagno-se/ nachweis/immunreaktion3.html Google Scholar
  123. Thomas L (Hrsg) (2005) Labor und Diagnose. 6. Aufl. TH-Books, Frankfurt/Main, S 1918fGoogle Scholar
  124. Frösner GG (1991) Hepatitis A virus. In: Belshe RB (ed) Textbook of Human Virology. 2nd edn. Mosby Year Book, St. Louis, pp 498–516Google Scholar
  125. Frösner GG (1991) Hepatitis A virus. In: Belshe RB (ed) Textbook of human virology. 2nd edn. Mosby Year Book, St. Louis, pp 498–516Google Scholar
  126. Niermeyer P, Gips CH, Huizenga JR et al (1980) Anti-HBc titers and immunoglobulin (M/G) clas-ses in acute chronic and resolved hepatitis B. Hepatogast-ruenteroloy 27:271–276Google Scholar
  127. Gerlich WH, Uy A, Lambrecht F (1986) Cutoff values of immunoglobulin M antibody against viral core antigen for differentiation of acute, chronic and past hepa-titis B infections. J Clin Microbiol 24:288–293PubMedGoogle Scholar
  128. Korec E, Dorstalova V, Korcova J et al (1990) Monoclonal antibodies against hepatitis B e antigen: production, characterization, and use for diagnosis. J Virol Methods 28:165–169PubMedGoogle Scholar
  129. Mimms L, Goetze A, Swanson S (1989) Second generation assays for the detection of antibody to HBsAg using recombinant DNA derived HBsAg. J Virol Methods 25:211–232PubMedGoogle Scholar
  130. Cooper S, Erickson AL, Adams EJ et al (1999) Analysis of a successful immune response against hepatitis C virus. Immunity 10:439–449PubMedGoogle Scholar
  131. Rizzetto M, Smedile A, Verme G (1999) Hepa-titis D virus. In: Bircher J, Benhamou J-P, McIntryre N (eds) Oxford Textbook of Clinical Hepatology, 2nd edn. Qxford University Press, Oxford, pp 896–903Google Scholar
  132. Frömer GG, von Brunn A, Nitschko H et al (2001) Hepatitis E Diagnostik: Nachweisempfindlichkeit von Anti-HEV und Anti-HEV-IgM, Westerm-Blot und Peptidassay als Bestätigungatest, Diagnosenatellung durch PCR, Sequenzvariation des HEV in verschiedenen Regionen der Welt In: Frömer GG (Hrsg) Moderne Hepatitis-diagnostik. 2. Aufl, Verlag im Kilian, Marburg, S 99–107Google Scholar
  133. Schaade L, Platzer CA, Kleines M et al (2000) GB virus-C/Hepatitis G virus infections in traumatologic out-patients, chronic non-A-E hepatitis and extrahepatic malignancies. Infection 28:30–33PubMedGoogle Scholar
  134. Lindhoff-Last E, Bauersacha R, Mosch G et al (1999) A Chromogenic Method for the Determination of Hirudin in Plasma. GTH (Gesellachaft für Thromboae-und Hämoataseforachung)Google Scholar
  135. ISO6710 (2002) Singie-Use Containers (recep-tacles) for Human Venous Blood Specimen Collection, Revised Version, International Organization for StatidardizationGoogle Scholar
  136. Kump DM, Sparrow AW (1970) Quantitation of secondary fibrinolysis in cyanotic heart disease. J Pediatr 77:679–682Google Scholar
  137. NCCLS Dokument HI-A4 (1996) Evacuated Tubes and Additives for Blood Specimen Collection. 4th edn., approved standard. National Committee for Clinical Laboratory Standards, Villanova PAGoogle Scholar
  138. Lütticken R (1992) Streptococcae. In: Burk-hardt F (Hrsg) Mikrobiologische Diagnostik Georg Thie-me Verlag, Stuttgart, S 51–62Google Scholar
  139. Köhler G, Milstein C(1975) Continuous Cultures of Fused Cells Secreting Antibody of Predefined Specificity. Nature 256, p 495PubMedGoogle Scholar
  140. Janeway CA et al (2001) lmmunobiology. 5th edn. Churchill Livingstone. London, p 626Google Scholar
  141. McClatchey KD (2002) Clinical Laboratory Medicine. Lippincott Williams & Wilkins, Philadelphia, pp 1350 105Google Scholar
  142. Thomas L (Hrsg) (2005) Labor und Diagnose. 6. Aufl. TH-Books, Frankfurt/Main, S 1121f 107Google Scholar
  143. Berg PA, Klein R (1992) Antimitochondrial antibodies in primary biliary cirrhosis and other disorders: Definition and clinical relevance. Dig Dis 10:85–101PubMedGoogle Scholar
  144. Bencze K (1994) Antimony. In:Seiler HG, Sigel A, Sigel H (eds) (1994) Handbook on Metals in Clinical and Analytical Chemistry. Marcel Dekker, New York Basel Hong Kong, S 227–236Google Scholar
  145. van der Woude FJ et al (1985) Autoantibodies to neutrophils and monocytes: tool for diagnosis and a marker of disease activity in Wegener’s granulomatosis. Lancet 1:425–429PubMedGoogle Scholar
  146. Gross WL (1995) Antineutrophil cytoplasmic autoantibody testing in vasculitides. Rheum Dis Clin North Am 21:987–1011PubMedGoogle Scholar
  147. Tan EM, Chan EKL, Sullivan KF et al (1988) Antinuclear antibodies (ANAs): Diagnostically specific immune markers and clues toward the understanding of systemic autoimmunity. Clin Immunol Immunopathol 47:121–141PubMedGoogle Scholar
  148. Schlumberger W, Olbrich S, Müller-Kunert E et al (1994) Autoantikörper-Diagnostik mit der Substratkombination: Humane Epithelzellen (HEp-2) und Primatenleber. Differenzierung der Antikörper durch Enzymimmuntests. Eigenverlag der EUROIMMUN AG, Lübeck, S 1–28 110Google Scholar
  149. Schlumberger W, Olbrich S, Müller-Kunert E et al (1994) Autoantikörper-Diagnostik mit der Substratkombination Humane Epithelzellen (HEp-2) und Primatenleber. Differenzierung der Antikörper durch Enzymimmuntests. Eigenverlag der EUROIMMUN AG, Lübeck, S 1–28Google Scholar
  150. Colman RW, Hirsh J, Marder VJ et al (eds) (2001) Hemostasis and Thrombosis. Lippincott Williams & Wilkins, Philadelphia, pp 1003–1020Google Scholar
  151. Grieco A et al (1998) Antipyrine clearance in chronic und neoplastic liver diseases: a study of 518 patients. J Gastroenterol Hepatol 13:460–466PubMedGoogle Scholar
  152. Storch W (1997) Immunfluoreszenzfibel. Blackwell Wissenschaftsverlag, Berlin Wien, S 139–141Google Scholar
  153. Main J, McKenzie H, Yeaman GR et al (1988) Antibody to Saccharomyces cerevisiae (bakers’ yeast) in Crohn’s disease. BMJ 297:1105–1106PubMedGoogle Scholar
  154. Bachellerie JP, Michot B, Nicoloso M et al (1995) Antisense snoRNAs: A Family of Nucleolar RNAs with Long Complementarities to rRNA. Trends Biochem Sci 20:261–264PubMedGoogle Scholar
  155. Bock SCC (2001) Antithrombin III and Heparin Cofactor II. In: Colman RW, Hirsh J, Marder VJ et al (eds) Hemostasis and Thrombosis. Lippincott Williams & Wilkins, Philadelphia, pp 321–333Google Scholar
  156. Kottke-Marchand K, Duncan A (2002) Antithrombin Deficiency. Arch Pathol Lab Med 126:1326–1336.Google Scholar
  157. Carrell RW, Lomas DA (2002) Alphal-antitrypsin Deficiency-a Model for Conformational Diseases. N Engl J Med 346:45–53PubMedGoogle Scholar
  158. Lammert F, Gressner A, Ritter K, Matern S (2005) Leber und Gallenblase/-wege. In: Guder WG, Nolte J (Hrsg) Das Laborbuch für Klinik und Praxis. Elsevier Urban & Fischer, München, Jena, S 158–159Google Scholar
  159. Laposata M, Green D, Van Cott EM et al (1998) College of American Pathologists Conference XXXI on Laboratory Monitoring of Anticoagulant Therapy: the Clinical Use and Laboratory Monitoring of Low-Molecular-Weight Heparin, Danaparoid, Hirudin and Related Compounds, and Argatroban. Arch Pathol Lab Med 122:799–807PubMedGoogle Scholar
  160. Koeppen KM, Heller S (1991) Differentialblutbild (panoptische Färbung). In: Boll I, Heller S (Hrsg) Praktische Blutzelldiagnostik. Springer-Verlag, Berlin Heidelberg New York, S 173Google Scholar
  161. Yung-Chang Chen, Chen-Yin Chen, Hsiang-Hao Hsu, Chung-Wei Yang, Ji-Tseng Fang (2002) APACHE III Scoring System in Critically Ill Patients with Acute Renal Failure Requiring Dialysis. Dialysis Transplantation 31:222–233Google Scholar
  162. Hesse A, Claßen A, Röhle G (1989) Labordiagnostik bei Urolithiasis. WVG, StuttgartGoogle Scholar
  163. Asper A (1982) Harnsteinanalytik. Habilitationsschrift Medizinische Fakultät ZürichGoogle Scholar
  164. Klein J, Horejsi V (1997) Immunology. 2nd edn. Blackwell Sciences, Oxford, pp 466–468Google Scholar
  165. Falbe J, Regitz M (1996) Römpp Chemie Lexikon. Georg Thieme Verlag, Stuttgart New YorkGoogle Scholar
  166. Schwandt P, Richter O, Parhofer KG (2001) Handbuch der Fettstoffwechselstörungen. Schattauer Verlag, StuttgartGoogle Scholar
  167. Schwandt P, Richter O, Parhofer KG (2001) Handbuch der Fettstoffwechselstörungen. Schattauer Verlag, StuttgartGoogle Scholar
  168. Schwandt P, Richter O, Parhofer KG (2001) Handbuch der Fettstoffwechselstörungen. Schattauer Verlag, StuttgartGoogle Scholar
  169. Schwandt P, Richter WO, Parhofer KG (2001) Handbuch der Fettstoffwechselstörungen. 2. Aufl. Schattauer Verlag, Stuttgart, S 115–139 Apolipoprotein C-IIIGoogle Scholar
  170. Mahley RW, Rall SCJr (2000) Apolipoprotein E: far more than a lipid transport protein,Annu Rev Genomics Hum Genet 1:507–537Google Scholar
  171. Day JR, Albers JJ, Gilbert TL et al (1994) Purification and molecular cloning of human apolipoprotein F. Biochem Biophys Res Commun 203:1146–1151Google Scholar
  172. Jones SE, Jomary C (2002) Clusterin. Int J Biochem Cell Biol 34:427–431PubMedGoogle Scholar
  173. Ghosh P, Hale EA, Lakshman MR (2001) Plasma sialic-acid index of apolipoprotein J (SIJ): a new alcohol intake marker. Alcohol 25:173–179PubMedGoogle Scholar
  174. Vaux DL, Strasser A (1996) The molecular biology of apoptosis. Proc Natl Acad Sci USA 93:2239–2244PubMedGoogle Scholar
  175. Thomas L (Hrsg) (2005) Labor und Diagnose. 6. Aufl. TH-Books, Frankfurt/Main, S 1918fGoogle Scholar
  176. Latscha HP, Linti GW, Klein HA (2004) Analytische Chemie. Chemie — Basiswissen III. Springer-Verlag. Berlin Heidelberg New YorkGoogle Scholar
  177. Thomas L (1994) Arbeitsgemeinschaft Medizinische Laboratoriumsdiagnostik (AML) gegründet. Lab Med 18:342Google Scholar
  178. DFG (2004) MAK-und BAT-Werte-Liste 2004. Wiley-VCH, WeinheimGoogle Scholar
  179. DFG (2004) MAK-und BAT-Werte-Liste 2004. Wiley-VCH, WeinheimGoogle Scholar
  180. Newton CR, Graham A, Heptinstall IE et al (1989) Analysis of Any Point Mutation in DNA. The Amplification Refractory Mutation System (ARMS), Nucleic Acids Res 17:2503–2515Google Scholar
  181. Degel F, Gibitz H.J, Desel H (2002) Lösungsmittel und Schnüffelstoffe. In: Külpmann WR (Hrsg) Klinisch-toxikologische Analytik Wiley-VCH, Weinheim S 419–426Google Scholar
  182. Kommission “Human-Biomonitoring” des Umweltbundesamtes (2003) Stoffmonographie Arson — Referenzwert für Urin. Bundesgesundheitsbl Gesundheitsforsch Gesundheitsschutz 46:1098–1106Google Scholar
  183. Tryding N, Tufvesson C, Sonntag O (1996) Drug Effects in Clinical Chemistry, Clinically important Analytical Interferences and Biological Effects of Drugs on Biochemical and Haematological Laboratory Investigations. 7th edn. AB Realtryk, StockholmGoogle Scholar
  184. Young DS (2000) Effects of Drugs on Clinical Laboratory Tests. 5th edn. AACC Press, Washington DCGoogle Scholar
  185. Gladtke E, von Hattingberg HM (1973) Pharmakokinetik. Springer-Verlag, Berlin Heidelberg New YorkGoogle Scholar
  186. McFarlane BM, McSorley CG, Vergani D et al (1986) Serum autoantibodies reacting with the hepatic asialoglycoprotein receptor protein (hepatic lectin) in acute and chronic liver disorders. J Hepatol 3:196–205Google Scholar
  187. Arndt T (2003) Asialotransferrin — An alternative to carbohydrate-deficient transferrin? Clin Chem 49:1022–1023PubMedGoogle Scholar
  188. Wallace RB, Johnson MJ, Hirose T et al (1981) The Use of Synthetic Oligonucleotides as Hybridization Probes. II. Hybridization of Oligonucleotides of Mixed Sequence to Rabbit β-Globin DNA. Nucleic Acids Res 9:879–894Google Scholar
  189. Schumann G et al (2002) IFCC Primary Reference Procedures for the Measurement of Catalytic Activity Concentrations of Enzymes at 37°C, Part 5: Reference Procedure for the Measurement of Catalytic Concentration of Aspartate Aminotransferase. Clin Chem Lab Med 40:725–733Google Scholar
  190. Berzofsky JA, Epstein SL, Berkower IJ (1989) Antigen-antibody interactions and monoclonal antibodies. In: Paul WA (ed) Fundamental Immunology. 2nd edn. Raven Press, New YorkGoogle Scholar
  191. Siggaard-Andersen O, Engel K, Jorgensen K, Astrup P (1960) A Micro Method for the Determination of pH, Carbon Dioxide Tension, Base Excess and Standard Bicarbonate in Capillary Blood. Scand J clin Lab Invest 12:172–176Google Scholar
  192. Cannon RO (1998) Role of nitric oxide in cardiovascular disease: focus on the endothelium. Clin Chem 44:1809–19PubMedGoogle Scholar
  193. Böger RH (2003) The emerging role of asymmetric dimethylarginine as a novel cardiovascular risk factor. Cardiovasc Res 59:824–33PubMedGoogle Scholar
  194. Bradon B, Lembeke B, Caspary WF (2003) Nichtinvasive Funktionsdiagnostik aus der Atemluft mit 13C-Atemtests. Dt Ärzteblatt 100, A3376–A3381Google Scholar
  195. Bradon B, Lembeke B, Caspary WF (2003) Nichtinvasive Funktionsdiagnostik aus der Atemluft mit 13C-Atemtests. Dt Ärzteblatt 100, A3376–A3381Google Scholar
  196. Braden B, Lembcke B, Caspary WF (2003) Nichtinvasive Funktionsdiagnostik aus der Atemluft mit 13C-Atemtests. Deutsches Ärzteblatt l00:A3376–A3381Google Scholar
  197. Henning BF, Doberauer C, Tepel M, Gillessen A (1997) H2-Atemtests, Internist Praxis 37:745–757Google Scholar
  198. Schneider ARJ, Caspary WF, Stein J (2004) 13C-basierte Atemtests in der Leberfunktionsdiagnostik. Z Gastroenterol 42:269–275PubMedGoogle Scholar
  199. Welz B, Sperling M (1997) Atomabsorptions-spektrometrie. 4. Aufl. Wiley-VCH, WeinheimGoogle Scholar
  200. Broekaert JAC (2002) Analytical Spectrometry with Flames and Plasmas. Wiley-VCH, WeinheimGoogle Scholar
  201. Broekaert JAC (2002) Analytical Spectrometry with Flames and Plasmas. Wiley-VCH, WeinheimGoogle Scholar
  202. Kellner R et al (eds) (2004) Analytical Chemistry. 2nd edn. Wiley-VCH, WeinkeimGoogle Scholar
  203. Lee F, Yanofsky C (1977) Transcriptional Termination at the Trp Operon Attenuators of E. Coli and S. Typhimurium: RNA Secondary Structure and Regulation of Terminations. Proc Natl Acad Sci USA 74:4365–4368PubMedGoogle Scholar
  204. Altmann DG, Bland JM (1994) Statistical Notes: Diagnostic tests 3: receiver operating characteristic plots. BMJ 309:188Google Scholar
  205. Auer J (1906) Some hitherto undescribed structures found in the large lymphocytes of a case of acute leukaemia. Am J Med Sci 131:1002–1015Google Scholar
  206. Ettre LS (1993) Nomenclature for Chromatography. Pure Appl Chem 65:819–472Google Scholar
  207. Guschhausen-Denker G, Deitenbeck D (1995) Sicherheit in der Gentechnik. Handbuch für Projektleiter und Mitarbeiter in gentechnischen Anlagen, Ed. Temmen, BremenGoogle Scholar
  208. Falbe J, Regitz M (Hrsg) (1989) Römpp Chemie Lezikon. Georg Thieme Verlag, Stuttgart New YorkGoogle Scholar
  209. Weiß C (1999) Basiswissen Medizinische Statistik. Springer-Verlag, Berlin Heidelberg New YorkGoogle Scholar
  210. ISO Statistics (1993) Vocabulary and symbols. Part 1. Probability and general statistical term. ISO 3534-1, GenevaGoogle Scholar
  211. Falbe J, Regitz M (Hrsg) (1989) Römpp Chemie Laxikon. Georg Thieme Verlag, Stuttgart New YorkGoogle Scholar
  212. Rttre LS (1993) Nomenclature for Chromatography. Pure Appl Chem 65:8l9–872Google Scholar
  213. Unger KK (Hrsg) (1989) Handbuch der HPLC. Teil 1 Leitfaden für Anfänger und Praktiker. GIT Verlag, DarmstadtGoogle Scholar
  214. Unger KK (Hrsg) (2003) Entscheidungsgrenzen DIN 58985. Beuth-Verlag, BerlinGoogle Scholar
  215. Mizokami T, Salvi M, Wall JR (2004) Eye muscle antibodies in Graves’ ophthalmopathy pathogenic or secondary epiphenomenon? J Endocrinol Invest 27:221–229PubMedGoogle Scholar
  216. Feltkamp TE, Kirkwood TB, Maini RN et al (1988) The first international standard for antibodies to double stranded DNA. Ann Rheum Dis 47:740–746PubMedGoogle Scholar
  217. Tan EM, Smolen JS, McDougal JS et al (1999) A critical evaluation of enzyme immunoassays for detection of antinuclear autoantibodies of defined specificities, Precision sensitivity, and specificity. Arthritis & Rheum 42:455–464Google Scholar
  218. Derksen RH, Bast EJ, Strooisma T et al (2002) A comparison between the Farr radioimmuoassay and a new automated fluorescence immunoassay for the detection of antibodies against double stranded DNA in serum. Ann Rheum Dis 61:1099–1102PubMedGoogle Scholar
  219. vonMühlen CA, Tan EM (1995) Autoantibodies in the diagnosis of systemic rheumatic diseases. Sem Arthritis Rheum 24:323–358Google Scholar
  220. Mueller-Eckhard C (1996) Transfusionsmedizin. Springer-Verlag, Berlin Heidelberg New YorkGoogle Scholar
  221. Tan EM, Chan EKL, Sullivan KF et al (1988) Antinuclear antibodies (ANAs): Diagnostically specific immune markers and clues toward the understanding of systemic autoimmunity. Clin Immunol Immunopathol 47:121–141PubMedGoogle Scholar
  222. Stinton LM, Eystathioy T, Selak S et al (2004) Autoantibodies to protein transport and messenger RNA processing pathways: endosomes, lysosomes, Golgi complex, proteasomes, assemblyosomes, exosomes, and GW bodies. Clin Immunol 110:30–44PubMedGoogle Scholar
  223. Stroncek D (2002) Neutrophil alloantigens. Transfus Med Rev 16:67–75PubMedGoogle Scholar
  224. Xu Q, Kiechl S, Mayr M et al (1999) Association of serum antibodies to heat-shock protein 65 with carotid atherosclerosis: clinical significance determined in a follow-up study. Circulation 100:1169–1174PubMedGoogle Scholar
  225. Cunningham-Rundles C (1996) IgA Autoantibodies. In: Peter JB, Shoenfeld Y (eds) Autoantibodies. Elsevier, Amsterdam, pp 417–422Google Scholar
  226. Strober W, Wochner RD, Barlow MH et al (1968) Immunoglobulin metabolism in ataxia telangiectasia. J Clin Invest 47:1905–1915PubMedGoogle Scholar
  227. Pozzilli P, Manfrini S, Monetini L (2001) Biochemical markers of type 1 diabetes; clinical use. Scand J Clin Lab Invest 61(Suppl 235):38–44Google Scholar
  228. Kiechle FL, Moore KH (2001) Insulin action and the clinical laboratory. J Clin Ligand Assay 24:217–228Google Scholar
  229. Voltz R (2002) Paraneoplastische neurologische Autoimmunerkrankungen. Nervenarat 73:909–929Google Scholar
  230. Strauss AJ, Seegal BC, Hsu KC et al (1960) Immunofluorescence demonstration of a muscle binding, complement-fixing serum globulin fraction in myasthenia gravis. Proc Soc Exp Biol Med 105:184–191Google Scholar
  231. Anderson JU, Goudie RB, Gray K et al (1968) Immunological features of idiopathic Addison’s disease an antibody to cells producing steroid hormones. Clin Exp Immunol 3:107–117PubMedGoogle Scholar
  232. Betterle C, Dal Pra C, Mantero F et al (2002) Autoimmune adrenal insufficiency and autoimmune polyendocrine syndromes: Autoantibodies, autoantigens, and their applicability in diagnosis and disease prediction. Endocrine Reviews 23:327–364PubMedGoogle Scholar
  233. Seissler J, Schott M, Steinbrenner H et al (1999) Autoantibodies to adrenal cytochrome P450 antigens in isolated Addison’s disease and autoimmune polyendocrine syndrome type II. Exp Clin Endocrinol Diabetes 107:208–213PubMedGoogle Scholar
  234. Scherbaum WA, Bottazzo GF (1983) Autoantibodies to vasopressin cells in idiopathic diabetes insipidus: evidence for an autoimmune variant. Lancet 23:897–901Google Scholar
  235. Pivonello R, De Bellis A, Faggiano A et al (2003) Central diabetes insipidus and autoimmunity: relationship between the occurrence of antibodies to arginine vasopressinsecreting cells and clinical, immunological, and radiological features in a large cohort of patients with central diabetes insipidus of known and unknown etiology. J clin Endocrinol Metab 88:1629–1636PubMedGoogle Scholar
  236. Notarangelo LD, Mazza C, Forino C et al (2004) AIRE and immunological tolerance: insights from the study of autoimmune polyendocrinopathy candidiasis and ectodermal dystrophy. Curr Opin Allergy Clin Immunol 4:491–496PubMedGoogle Scholar
  237. Meriluoto T, Halonen M, Pelto-Huikko M et al (2001) The autoimmune regulator: a key toward understanding the molecular pathogenesis of autoimmune polyendocrinopathy-candidiasis-actodermal dystrophy. Keio J Med 50:225–239PubMedGoogle Scholar
  238. Nagamine K, Peterson P, Scott HS et al (1997) Positional cloning of the APECED gene. Nat Genet 17:393–398PubMedGoogle Scholar
  239. Lindl T, Bauer J (1994) Zell-und Gewebekultur: Einführung in die Grundlagen sowie ausgewählte Methoden und Anwendungen. 3. Aufl. Gustav Fischer Verlag, Stuttgart Jena New YorkGoogle Scholar
  240. Kingston HM, Kingston ML (1994) Nomenclature in laboratory robotics and automation. IUPAC recommendations 1994. Pure & Appl Chem 66:609–630Google Scholar
  241. Haeckel R et al (1995) Rationalisierung quantitativer Analysenverfahren. In: Greiling H, Gresssner AM (Hrsg) Lehrbuch der Klinischen Chemie und Pathobiochemie, 3. Aufl. Schattauer Verlag, Stuttgart New YorkGoogle Scholar
  242. Lottspeich F, Zorbas H (1998) Bioanalytik. Spektrum Akademischer Verlag Heidelberg, BerlinGoogle Scholar
  243. Brown TA (Hrsg) Moderne Genetik. 2. Aufl. Spektrum Akademischer Verlag, Heidelberg-Berlin, S 19Google Scholar
  244. Berzowsky JA, Epstein SL, Berkower IJ (1989) Antigen-antibody interactions and monoclonal antibodies. In: Paul WE (ed) Fundamental Immunology. 2nd edn. Raven Press, New York, S 315–356Google Scholar
  245. Klein J (1990) Antigen-antibody interactions. In: Klein J, Horejsi V (eds) Immunology. Blackwell Scientific, Cambridge MA, S 294–310Google Scholar

Copyright information

© Springer Medizin Verlag Heidelberg 2007

Authors and Affiliations

  • Axel M. Gressner
    • 1
  • Torsten Arndt
    • 2
  1. 1.Institut für Klinische Chemie und Pathobiochemie -Zentrallaboratorium-Universitätsklinikum der RWTH AachenAachenGermany
  2. 2.Bioscientia Institut für Medizinische Diagnostik GmbHIngelheimGermany

Personalised recommendations