Advertisement

Efficient Implementation of the Singular Value Decomposition on a Reconfigurable System

  • Christophe Bobda
  • Klaus Danne
  • André Linarth
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2778)

Abstract

We present a new implementation of the singular value decomposition (SVD) on a reconfigurable system made upon a Pentium processor and a FPGA-board plugged on a PCI slot of the PC. A maximum performance of the SVD is obtained by an efficient distribution of the data and the computation across the FPGA resource. Using the reconfiguration capability of the FPGA help us implement many operators on the same device.

Keywords

Processing Element Reconfigurable System FPGA Resource FPGA Board Column Pair 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Berry, M., Do, T., O’Brien, G., Krishna, V., Varadhan, S.: Using linear algebra for information retrieval. J. Soc. Indust. Appl. Math. 37(4), 573–595 (1995)MathSciNetGoogle Scholar
  2. 2.
    Berry, M., Do, T., O’Brien, G., Krishna, V., Varadhan, S.: SVDPACK(Version 1.0) User’s Guide (1996)Google Scholar
  3. 3.
    Bobda, C., Steenbock, N.: Singular value decomposition on distributed reconfigurable systems. In: 12th IEEE International Workshop On Rapid System Prototyping(RSP 2001), Monterey California, IEEE Computer Society Press, Los Alamitos (2001)Google Scholar
  4. 4.
    Brent, R.P., Luk, F.T.: The solution of singular-value and eigenvalue problems on multiprocessor arrays. SIAM J. Sci. Stat. Comput. 6(1), 69–84 (1985)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Deerwester, S., Dumai, S., Furnas, G., Landauer, T., Harshmann, R.: Indexing by latent semantic analysis. Journal of American Society for Information Science 41(6), 391–407 (1990)CrossRefGoogle Scholar
  6. 6.
    Forsythe, G.E., Henrici, P.: The cyclic jacobi method for computing the principal values of a complex matrix. Trans. Amer. Math. Soc. 94, 1–23 (1960)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Golub, G.H., Van Loan, C.F.: Matrix Computations. North Oxford Academic Publisching (1983)Google Scholar
  8. 8.
    Hansen, E.R.: On cyclic jacobi methods. J. Soc. Indust. Appl. Math. 11(2), 448–459 (1963)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Hestenes, M.R.: Inversion of matrices by biorthogonalization and related results. J. Soc. Indust. Appl. Math. 6(1), 51–90 (1958)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Luk, F., Cavallaro, J.: CORDIC arithmetic for an svd processor. Journal of Parallel and Distributed Computing 5(3), 271–290 (1998)Google Scholar
  11. 11.
    Cavallaro, J., Hemkumar, N.: Efficient complex matrix transformations with CORDIC. In: IEEE Symposium on Computer Arithmetic, pp. 122–129. IEEE Computer Society Press, Los Alamitos (1993)Google Scholar
  12. 12.
    Rustishauser, H.: The jacobi method for real symetric matrices. Handbook for Automatic Computation 2, 202–211 (1971) (linear Algebra)CrossRefGoogle Scholar
  13. 13.
    Salton, G.: The SMART Retrieval System. Prentice Hall, Inc., Englewood Cliffs (1971)Google Scholar
  14. 14.
    Wilkinson, J.H.: The algebraic eigenvalue problem. Oxford University Press, Oxford (1965)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Christophe Bobda
    • 1
  • Klaus Danne
    • 1
  • André Linarth
    • 1
  1. 1.Heinz Nixdorf InstitutePaderborn UniversityPaderbornGermany

Personalised recommendations