Advertisement

7. From the Cluster to the Liquid: Ab-Initio Calculations on Realistic Systems Based on First-Principles Molecular Dynamics

  • C. Massobrio
  • M. Celino
  • Y. Pouillon
  • I.M.L. Billas
Part II Simulation from Nanoscopic Systems to Macroscopic Materials
Part of the Lecture Notes in Physics book series (LNP, volume 642)

Abstract

In both clusters and disordered systems the determination of structural properties often relies on qualitative interpretations of experimental data. First-principles molecular dynamics provides a reliable atomic-scale tool to optimize geometries and follow the dynamical evolution at different temperatures. We present three examples of application of first-principles molecular dynamics to the study of finite systems and disordered, bulk networks. In the first case, devoted to the copper oxide clusters CuO2 and CuO6, the account of temperature effects and a careful search of all isomer allows to complement effectively photoelectron spectroscopy data. In the second example, we analyze the behavior of the C60 fullerene when one or two silicon atoms are inserted in the cage to replace carbon atoms. Silicon atoms correspond to chemically reactive sites of the fullerenes, giving rise to local structural distortions. Then, we describe the determination of the structure for liquid SiSe2 at thermal equilibrium. The microscopic origins of intermediate range order are rationalized in terms of network connectivity and specific features appearing in the structure factors. Overall, first-principles molecular dynamics appears as a convincing method to corroborate experimental work and make reliable predictions based on well-established electronic structure techniques.

Keywords

Silicon Atom Mulliken Charge Partial Structure Factor Short Range Chemical Order Homopolar Bond 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1. W.A. de Heer, Rev. Mod. Phys. 65, 611 (1993).Google Scholar
  2. 2. L.-S. Wang and H. Wu, Zeit. für Physikalische Chemie 203, 45 (1998).Google Scholar
  3. 3. P.S. Salmon, Proc. R. Soc. London A 437, 591 (1992).Google Scholar
  4. 4. P.S. Salmon, Proc. R. Soc. London A 445, 351 (1994).Google Scholar
  5. 5. D. Marx and J. Hütter, ‘Ab Initio molecular dynamics: theory and implementation’, in Modern Methods and Algorithms of Quantum Chemistry, J. Grotendorst (Ed.), John von Neumann Institute for Computing, Jülich, NIC Series, Vol.1, 301-449 (2000)Google Scholar
  6. 6. M. Wilson and P.A. Madden, J. Phys. Condens. Matter 5, 6833 (1993).Google Scholar
  7. 7. S.M. Foiles, M.I. Baskes and M.S. Daw, Phys. Rev. B 33, 7983 (1986).Google Scholar
  8. 8. F.H. Stillinger and T.A. Weber, Phys. Rev. B 31, 5262 (1985).Google Scholar
  9. 9. R. Car and M. Parrinello, Phys. Rev. Lett. 55, 2471 (1985).Google Scholar
  10. 10. J.M. Zuo, M. Kim, M.O’Keefe and J.C.H. Spence, Nature 401, 49 (1999).Google Scholar
  11. 11. R.E. Dickerson, H.B. Gray and G.P. Haight, Chemical Principles (W.A. Benjamin inc., Menlo Park, California, 1974).Google Scholar
  12. 12. P. Vashishta, R.K. Kalia, G.A. Antonio and I. Ebbsjö, Phys. Rev. Lett. 62, 1651 (1989).Google Scholar
  13. 13. R.P. Feynmann, Phys. Rev. 56, 340 (1939).Google Scholar
  14. 14. W. Kohn and L.J. Sham, Phys. Rev. 140, A1133 (1965).Google Scholar
  15. 15. S. Nosé, Mol. Phys. 52, 255 (1984); W. G. Hoover, Phys. Rev. A 31, 1695 (1985).Google Scholar
  16. 16. P. Blöchl and M. Parrinello, Phys. Rev. B 45, 9413 (1992).Google Scholar
  17. 17. Y. Pouillon and C. Massobrio, Chem. Phys. Lett. 331, 290 (2000).Google Scholar
  18. 18. Y. Pouillon and C. Massobrio, Chem. Phys. Lett. 356, 469 (2002).Google Scholar
  19. 19. M. Celino and C. Massobrio, Comp. Mat. Science 24, 28 (2002).Google Scholar
  20. 20. M. Celino and C. Massobrio, Comp. Physics Comm. 147 166 (2002).Google Scholar
  21. 21. J. P. Perdew, J. A. Chevary, S. H. Vosko, K. A. Jackson, M. R. Pederson, D. J. Singh and C. Fiolhais, Phys. Rev. B 46, 6671 (1992).Google Scholar
  22. 22. A.D. Becke, Phys. Rev. A 38, 3098 (1988).Google Scholar
  23. 23. C. Lee, W. Yang, and R.G. Parr, Phys. Rev. B 37, 785 (1988).Google Scholar
  24. 24. D. Vanderbilt, Phys. Rev. B 41, 7892 (1990).Google Scholar
  25. 25. K. Laasonen, A. Pasquarello, R. Car, C. Lee and D. Vanderbilt, Phys. Rev. B 47, 10142 (1993).Google Scholar
  26. 26. I.M.L. Billas, C. Massobrio, M. Boero, M. Parrinello, W. Branz, F. Tast, N. Malinowski, M. Heinebrodt and T.P. Martin, J. Chem. Phys. 111, 6787 (1999).Google Scholar
  27. 27. P. Császár and P. Pulay, J. Molec. Struc. 114, 31 (1984).Google Scholar
  28. 28. J. Hutter, H.P. Lüthi and M. Parrinello, Comp. Mat. Science 2, 244 (1994).Google Scholar
  29. 29. F. Tassone, F. Mauri and R. Car, Phys. Rev. B 50, 10561 (1994).Google Scholar
  30. 30. Code CPMD, version 3.0f, developed by J. Hutter, P. Ballone, M. Bernasconi, P. Focher, E. Fois, S. Goedecker, D. Marx, M. Parrinello, M. Tuckerman, at MPI für Festkörperforschung and IBM Zurich Research Laboratory (1990-1997).Google Scholar
  31. 31. H. Wu, S.R. Desai and L.S. Wang, J. Chem. Phys. 103, 4363 (1995).Google Scholar
  32. 32. H. Wu, S.R. Desai and L.S. Wang, J. Phys. Chem. 101, 2103 (1997).Google Scholar
  33. 33. K. Hedberg, Science 254, 410 (1991).Google Scholar
  34. 34. W. Andreoni, F. Gigy and M. Parrinello, Chem. Phys. Lett. 190, 159 (1992).Google Scholar
  35. 35. W. Andreoni, A. Curioni, K. Holczer, K. Prassides, M. Keshavarz-K., J.-C. Hummelen and F. Wudl, J. Am. Chem. Soc. 118, 11335 (1996).Google Scholar
  36. 36. R. West, Angew. Chemie 99, 1231 (1987).Google Scholar
  37. 37. R.E. Dickerson, H.B. Gray and G.P. Haight, Chemical Principles (W.A. Benjamin inc., Menlo Park, California, 1974).Google Scholar
  38. 38. T. Guo, C. Jin and R.E. Smalley, J. Phys. Chem. 95, 4948 (1991).Google Scholar
  39. 39. N. Kurita, K. Kobayashi, H. Kumahora and K. Tago, Phys. Rev. B 48, 4850 (1993).Google Scholar
  40. 40. S.R. Elliott, Phys. Rev. Lett. 67, 711 (1991).Google Scholar
  41. 41. C. Massobrio, A. Pasquarello and R. Car, Phys. Rev. Lett. 80, 2342 (1998).Google Scholar
  42. 42. C. Massobrio, A. Pasquarello and R. Car, J. Am. Chem. Soc. 121, 2943 (1999).Google Scholar
  43. 43. I.T. Penfold and P.S. Salmon, Phys. Rev. Lett. 67, 97 (1991).Google Scholar
  44. 44. I. Petri, P. S. Salmon and H.E. Fischer, Phys. Rev. Lett. 84, 2413 (2000).Google Scholar
  45. 45. S. Susman, R.N. Johnson, D.L. Price and K.J. Volin, Mat. Res. Soc. Symp. Proc. 61, 91 (1986).Google Scholar
  46. 46. A. Pradel, G. Taillades, M. Ribes, H. Eckert, J. Non-Cryst. Solids 188, 75 (1995).Google Scholar
  47. 47. C. Rau, P. Armand, A. Pradel, C.P.E. Varsamis, E.I. Kamitsos, D. Granier, A. Ibanez, E. Philippot, Phys. Rev. B 63, 184204 (2001).Google Scholar
  48. 48. P. Boolchand, W.J. Bresser, Nature 410, 1070 (2001).Google Scholar
  49. 49. P. Walsh, W. Li, R.K. Kalia, A. Nakano, P. Vashishta, S. Saini, Appl. Phys. Lett. 78, 3328 (2001).Google Scholar
  50. 50. M. Tenhover, M.A. Hazle, R.K. Grasselli, Phys. Rev. Lett. 51, 404 (1983).Google Scholar
  51. 51. M. Tenhover, M.A. Hazle, R.K. Grasselli, C.W. Thompson, Phys. Rev. B 28, 4608 (1983).Google Scholar
  52. 52. J.E. Griffiths, M. Malyj, G.P. Espinoso, J.P. Remeika, Phys. Rev. B 30, 6978 (1984).Google Scholar
  53. 53. S. Susman, R.W. Johnson, D.L. Price, K.J. Volin in: Defects in Glasses, eds. F.L. Galeener, D.L. Griscom and M.J. Weber, vol. 61 Symp. Proc. (Mat. Res. Soc. Pittsburgh, PA, 1986) p. 91.Google Scholar
  54. 54. S.R. Elliott, Physics of Amorphous Materials, Longman Group UK Limited, Essex, 1990.Google Scholar
  55. 55. M. Tenhover, R.D. Boyer, R.S. Henderson, T.E. Hammond, G.A. Shreve, Solid St. Comm. 65, 1517 (1988).Google Scholar
  56. 56. L.F. Gladden, S.R. Elliott, Phys. Rev. Lett. 59, 908 (1987).Google Scholar
  57. 57. L.F. Gladden, S.R. Elliott, J. Non-Cryst. Solids 109, 211 (1989).Google Scholar
  58. 58. L.F. Gladden, S.R. Elliott, J. Non-Cryst. Solids 109, 223 (1989).Google Scholar
  59. 59. L.F. Gladden, J. Non-Cryst. Solids 123, 22 (1990).Google Scholar
  60. 60. W. Li, R.K. Kalia, P. Vashishta, Phys. Rev. Lett. 77, 2241 (1996).Google Scholar
  61. 61. W. Li, R.K. Kalia, P. Vashishta, Europhys. Lett. 35, 103 (1996).Google Scholar
  62. 62. K. Jackson, S. Grossman, Phys. Rev. B 65, 012206 (2001).Google Scholar
  63. 63. M. Celino, PhD dissertation, Université Louis Pasteur Strasbourg, 2002.Google Scholar
  64. 64. G. Antonio, R.K. Kalia, A. Nakano and P. Vashishta, Phys. Rev. B 45, 7455 (1992).Google Scholar
  65. 65. For the explicit relationship between the three sets of partial structure factors commonly used (Faber-Ziman, Ashcroft-Langreth and Bhatia-Thornton) see Y. Waseda, The structure of Non-Crystalline Materials, (McGraw-Hill, New York, 1980)).Google Scholar
  66. 66. P. Vashishta, R.K. Kalia, J.P. Rino, and I. Ebbsjö, Phys. Rev. B 41, 12197 (1990).Google Scholar
  67. 67. H. Iyetomi, P. Vashishta and R.K. Kalia, Phys. Rev. B 43, 1726 (1991).Google Scholar
  68. 68. I.T. Penfold, P.S. Salmon, Phys. Rev. Lett. 67, 97 (1991).Google Scholar
  69. 69. C. Massobrio, M. Celino and A. Pasquarello, J. Phys. Condens. Matter to be published.Google Scholar
  70. 70. C. Massobrio, A. Pasquarello and R. Car, Phys. Rev. B 64, 144205 (2001).Google Scholar
  71. 71. M. Celino and C. Massobrio, to be published.Google Scholar
  72. 72. M. F. Thorpe, in Insulating and Semiconducting Glasses edited by P. Boolchand (World Scientific, Singapore, 2000), p.95.Google Scholar

Authors and Affiliations

  • C. Massobrio
    • 1
  • M. Celino
    • 2
  • Y. Pouillon
    • 1
    • 2
  • I.M.L. Billas
    • 3
  1. 1.Institut de Physique et de Chimie des Matériaux de Strasbourg, 23 rue du Loess, BP 43, 67034 Strasbourg Cedex 2France
  2. 2.Ente per le Nuove Tecnologie, l’Energia e l’Ambiente, C.R. Casaccia, CP 2400, 00100 Roma, Italy and Istituto Nazionale per la Fisica della Materia, Unità di Ricerca Roma1Italy
  3. 3.Département de Biologie et de Génomique Structurales, Institut de Génetique et de Biologie Moléculaire et Cellulaire, 1 rue Laurent Fries, BP 10142, 67404 IllkirchFrance

Personalised recommendations