Advertisement

Hightech im Dienste der Infektiologie

  • Joachim Bugert
Chapter
  • 82 Downloads

Zusammenfassung

Jeden Tag sterben weltweit etwa 13 Millionen Menschen an den Folgen viraler, bakterieller oder parasitärer Erkrankungen.

Schlüsselliteratur

  1. 1.
    Greenbaum DC, Baruch A, Grainger M, Bozdech Z, Medzihradszky KF, Engel J, DeRisi J, Holder AA, Bogyo M (2002) A role for the protease falcipain 1 in host cell invasion by the human malaria parasite. Science 298:2002–2006PubMedCrossRefGoogle Scholar
  2. 2.
    Lasonder E et al. (2002) Analysis of the Plasmodium falciparum proteome by high-accuracy mass spectrometry. Nature 419:537–542PubMedCrossRefGoogle Scholar
  3. 3.
    Sijwali PS, Kato K, Seydel KB, Gut J, Lehman J, Klemba M, Goldberg DE, Miller LH Rosenthal PJ (2004) Plasmodium falciparum cysteine protease falcipain-1 is not essential in erythrocytic stage malaria parasites. Proc Natl Acad Sci USA 101:8721–8726PubMedCrossRefGoogle Scholar
  4. 4.
    Nilsson CL (2002) Bacterial proteomics and vaccine development. Am J Pharmacogenomics 2:59–65PubMedCrossRefGoogle Scholar
  5. 5.
    Petricoin EF, Zoon KC, Kohn EC, Barrett JC, Liotta LA (2002) Clinical proteomics: translating benchside promise into bedside reality. Nature Rev Drug Discov 1:683–695CrossRefGoogle Scholar
  6. 6.
    Frangeul L, Nelson KE, Buchrieser C, Danchin A, Glaser P, Kunst F (1999) Cloning and assembly strategies in bacterial genome projects. Microbiology 145:2625–2634PubMedGoogle Scholar
  7. 7.
    Mauch K, Buziol S, Schmid JW, Reuss M (2002) Computer aided design of metabolic Networks. AIChE Symposium Series 98:82–91Google Scholar
  8. 8.
    Zhang L et al. (2002) Contribution of human α-defensin 1, 2 and 3 to the anti-HIV-1 activity of CD8 antiviral factor. Science 298:995–1000PubMedCrossRefGoogle Scholar
  9. 9.
    Münch J, Ständker L, Adermann K et al. (2007) Discovery and Optimization of a Natural HIV-1 Entry Inhibitor Targeting the gp41 Fusion Peptide. Cell 129:263–275PubMedCrossRefGoogle Scholar
  10. 10.
    Hanash S (2003) Disease proteomics. Nature 422:226–232PubMedCrossRefGoogle Scholar
  11. 11.
    Diruggiero J et al. (2000) Evidence of recent lateral gene transfer among hyperthermophilic archaea. Mol Microbiol 38:684–693PubMedCrossRefGoogle Scholar
  12. 12.
    Hutchison CA et al. (1999) Global transposon mutagenesis and a minimal Mycoplasma genome. Science 286:2165–2169PubMedCrossRefGoogle Scholar
  13. 13.
    Haas G et al. (2002) Immunoproteomics of Helicobacter pylori infection and relation to gastric disease. Proteomics 2:313–324PubMedCrossRefGoogle Scholar
  14. 14.
    Chargaff E (1980) In praise of smallness-can we return to small sciene? Perspectives in Biology and Medicine 23:37Google Scholar
  15. 15.
    Pellois JP et al. (2002) Individually addressable parallel peptide synthesis on microchips. Nature Biotechnol 20:922–926CrossRefGoogle Scholar
  16. 16.
    Opinion (2002) Microarray standards at last. Nature 419:323Google Scholar
  17. 17.
    Schulz-Knappe P, Schrader M, Standker L et al. (1997) Peptide bank generated by large-scale preparation of circulating human peptides. Journal of Chromatography A 776:125–132PubMedCrossRefGoogle Scholar
  18. 18.
    Phillips CI, Bogyo M (2005) Proteomics meets microbiology: technical advances in the global mapping of protein expression and function. Cell Microbiol 7:1061–1076PubMedCrossRefGoogle Scholar
  19. 19.
    Martin W, Dagan T, Koonin EV, Dipippo JL, Gogarten JP, Lake JA (2007) The evolution of eukaryotes. Science 316:542–543PubMedCrossRefGoogle Scholar
  20. 20.
    Yooseph S, Sutton G, Rusch DB, Halpern AL, Williamson SJ, et al. (2007) The Sorcerer II Global Ocean Sampling Expedition: Expanding the Universe of Protein Families. PLoS Biol 5:e16PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Joachim Bugert
    • 1
  1. 1.Institut für Medizinische Mikrobiologie — Klinische VirologieMünster

Personalised recommendations