The Role of Neuropeptide Endopeptidases in Cutaneous Immunity

  • T. E. Scholzen
  • Proteolytic processing and degradation plays an important role in modulating the generation and bioactivity of neuroendocrine peptide mediators, a class of key molecules in cutaneous biology.

  • Accordingly, the cellular localization and expression, and the molecular biology and structural properties of selected intracellular prohormone convertases and ectopically expressed zinc-binding metalloendoproteases are discussed.

  • A special reference will be made to the physiologic and pathophysiologic significance of these endopeptidases in cutaneous immunobiology.

  • Because of the number of pathologically relevant changes in inflammation and tumor progression that can be directly attributed to neprilysin and angiotensin-converting enzyme, a particular focus will be on the role of these enzymes in modulating innate and adaptive immune responses in the skin.


Angiotensin Converting Enzyme Alopecia Areata Dipeptidyl Peptidase Neutral Endopeptidase Transporter Associate With Antigen Presentation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Angiotensin-converting enzyme










Calcitonin gene-related peptide


Cutaneous T-cell lymphomas


Dendritic cell(s)


Dipeptidyl peptidase IV


Experimental autoimmune encephalomyelitis


Endothelin-converting enzyme


Endothelial cells




Melanocortin receptor


Major histocompatibility complex


Melanocytestimulating hormone




Pituitary adenylate-cyclase-activating polypeptide


Prohormone convertase




Substance P




helper T-cells


Effector T-cells


Vasoactive intestinal peptide


  1. 1.
    Aberdam E, Auberger P, Ortonne JP, Ballotti R (2000) Neprilysin, a novel target for ultraviolet B regulation of melanogenesis via melanocortins. J Invest Dermatol 115:381–387PubMedCrossRefGoogle Scholar
  2. 2.
    Aliberti J, Viola JP, Vieira-de-Abreu A, Bozza PT, Sher A, Scharfstein J (2003) Cutting edge: bradykinin induces IL-12 production by dendritic cells: a danger signal that drives Thl polarization. J Immunol 170:5349–5353PubMedGoogle Scholar
  3. 3.
    Battistini B, Daull P, Jeng AY (2005) CGS 35601, a triple inhibitor of angiotensin converting enzyme, neutral endopeptidase and endothelin converting enzyme. Cardiovasc Drug Rev 23:317–330PubMedGoogle Scholar
  4. 4.
    Bilalovic N, Sandstad B, Golouh R, Nesland JM, Selak I, Torlakovic EE (2004) CD10 protein expression in tumor and stromal cells of malignant melanoma is associated with tumor progression. Mod Pathol 17:1251–1258PubMedCrossRefGoogle Scholar
  5. 5.
    Bock O, Kreiselmeyer I, Mrowietz U (2001) Expression of dipeptidyl-peptidase IV (CD26) on CD8 + T cells is significantly decreased in patients with psoriasis vulgaris and atopic dermatitis. Exp Dermatol 10:414–419PubMedCrossRefGoogle Scholar
  6. 6.
    Brain SD (1997) Sensory neuropeptides: theirrole in inflammation and wound healing. Immunopharmacology 37:133–152PubMedCrossRefGoogle Scholar
  7. 7.
    Burssens P, Steyaert A, Forsyth R, van Ovost EJ, De PY, Verdonk R (2005) Exogenously administered substance P and neutral endopeptidase inhibitors stimulate fibroblast proliferation, angiogenesis and collagen organization during Achilles tendon healing. Foot Ankle Int 26:832–839PubMedGoogle Scholar
  8. 8.
    Busso N, Wagtmann N, Herling C, Chobaz-Peclat V, Bischof-Delaloye A, So A, et al. (2005) Circulating CD26 is negatively associated with inflammation in human and experimental arthritis. Am J Pathol 166:433–442PubMedGoogle Scholar
  9. 9.
    Campbell DJ (2003) Vasopeptidase inhibition: a double-edged sword? Hypertension 41:383–389PubMedCrossRefGoogle Scholar
  10. 10.
    Castro MG, Morrison E (1997) Post-translational processing of proopiomelanocortin in the pituitary and in the brain. Crit Rev Neurobiol 11:35–57PubMedGoogle Scholar
  11. 11.
    Catania A, Gatti S, Colombo G, Lipton JM (2004) Targeting melanocortin receptors as a novel strategy to control inflammation. Pharmacol Rev 56:1–29PubMedCrossRefGoogle Scholar
  12. 12.
    Chan J, Smoller BR, Raychauduri SP, Jiang WY, Farber EM (1997) Intraepidermal nerve fiber expression of calcitonin gene-related peptide, vasoactive intestinal peptide and sub-stance P in psoriasis. Arch Dermatol Res 289:611–616PubMedCrossRefGoogle Scholar
  13. 13.
    Chen T, Ajami K, McCaughan GW, Gorrell MD, Abbott CA (2003) Dipeptidyl peptidase IV gene family. The DPIV family. Adv Exp Med Biol 524:79–86PubMedCrossRefGoogle Scholar
  14. 14.
    Cohen AD, Bonneh DY, Reuveni H, Vardy DA, Naggan L, Halevy S (2005) Drug exposure and psoriasis vulgaris: case-control and case-crossover studies. Acta Derm Venereol 85:299–303PubMedCrossRefGoogle Scholar
  15. 15.
    Costerousse O, Allegrini J, Lopez M, Alhenc-Gelas F (1993) Angiotensin I-converting enzyme in human circulating mononuclear cells: genetic polymorphism of expression in T-lymphocytes. Biochem J 290(Pt 1):33–40PubMedGoogle Scholar
  16. 16.
    Cutrona G, Ferrarini M (2001) Expression of CD10 by human T cells that undergo apoptosis both in vitro and in vivo. Blood 97:2528PubMedCrossRefGoogle Scholar
  17. 17.
    Danilov SM, Sadovnikova E, Scharenborg N, Balyasnikova IV, Svinareva DA, Semikina EL, et al. (2003) Angiotensin-converting enzyme (CD143) is abundantly expressed by dendritic cells and discriminates human monocyte-derived dendritic cells from acute myeloid leukemia-derived dendritic cells. Exp Hematol 31:1301–1309PubMedCrossRefGoogle Scholar
  18. 18.
    Deddish PA, Marcic B, Tan F, Jackman HL, Chen ZZ, Erdos EG (2002) Neprilysin inhibitors potentiate effects of bradykinin on B2 receptor. Hypertension 39:619–623PubMedCrossRefGoogle Scholar
  19. 19.
    Doyle HA, Mamula MJ (2001) Post-translational protein modifications in antigen recognition and autoimmunity. Trends Immunol 22:443–449PubMedCrossRefGoogle Scholar
  20. 20.
    Dubovy P (1987) Histochemical evidence for the presence of dipeptidylpeptidase IV in the Schwann cells of skin unmyelinated axons. Experientia 43:883–884PubMedCrossRefGoogle Scholar
  21. 21.
    Erdos EG, Marcic BM (2001) Kinins, receptors, kininases and inhibitors — where did they lead us? Biol Chem 382:43–47PubMedCrossRefGoogle Scholar
  22. 22.
    Erin N, Zhao W, Bylander J, Chase G, Clawson G (2006) Capsaicin-induced inactivation of sensory neurons promotes a more aggressive gene expression phenotype in breast cancer cells. Breast Cancer Res Treat 99:351–364PubMedCrossRefGoogle Scholar
  23. 23.
    Fastrich M, Fabritz L, Luger TA, Scholzen TE (2006) Neprilysin/angiotensin-converting enzyme double-deficient mice: a mouse model to study inflammatory skin disease. J Invest Dermatol 126:1675Google Scholar
  24. 24.
    Gliddon DR, Howard CJ (2002) CD26 is expressed on a restricted subpopulation of dendritic cells in vivo. Eur J Immunol 32:1472–1481PubMedCrossRefGoogle Scholar
  25. 25.
    Gonzalez-Rey E, Chorny A, Delgado M (2007) Regulation of immune tolerance by anti-inflammatory neuropeptides. Nat Rev Immunol 7:52–63PubMedCrossRefGoogle Scholar
  26. 26.
    Goodman OB, Jr., Febbraio M, Simantov R, Zheng R, Shen R, Silverstein RL, et al. (2006) Neprilysin inhibits angiogenesis via proteolysis of fibroblast growth factor-2. J Biol Chem 281:33597–33605PubMedCrossRefGoogle Scholar
  27. 27.
    Gorrell MD (2005) Dipeptidyl peptidase IV and related enzymes in cell biology and liver disorders. Clin Sci (Lond) 108:277–292CrossRefGoogle Scholar
  28. 28.
    Graf K, Kunkel K, Zhang M, Grafe M, Schultz K, Schudt C, et al. (1995) Activation of adenylate cyclase and phosphodiesterase inhibition enhance neutral endopeptidase activity in human endothelial cells. Peptides 16: 1273–1278PubMedCrossRefGoogle Scholar
  29. 29.
    Graf K, Koehne P, Grafe M, Zhang M, Auch-Schwelk W, Fleck E (1995) Regulation and differential expression of neutral endopeptidase 24.11 in human endothelial cells. Hypertension 26:230–235PubMedGoogle Scholar
  30. 30.
    Guy JL, Lambert DW, Warner FJ, Hooper NM, Turner AJ (2005) Membrane-associated zinc peptidase families: comparing ACE and ACE2. Biochim Biophys Acta 1751:2–8PubMedGoogle Scholar
  31. 31.
    Hamming I, Timens W, Bulthuis ML, Lely AT, Navis GJ, van GH (2004) Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis. J Pathol 203:631–637PubMedCrossRefGoogle Scholar
  32. 32.
    Huskic J, Alendar F, Matavulj A, Ostoic L (2004) Serum angiotensin converting enzyme in patients with psoriasis. Med Arh 58:202–205PubMedGoogle Scholar
  33. 33.
    Ikai K (1995) Exacerbation and induction of psoriasis by angiotensin-converting enzyme inhibitors. J Am Acad Dermatol 32:819PubMedCrossRefGoogle Scholar
  34. 34.
    Ishimaru F, Potter NS, Shipp MA (1996) Phorbol ester-mediated regulation of CD10/neutral endopeptidase transcripts in acute lymphoblastic leukemias. Exp Hematol 24:43–48PubMedGoogle Scholar
  35. 35.
    Iwata N, Higuchi M, Saido TC (2005) Metabolism of amyloid-beta peptide and Alzheimer’s disease. Pharmacol Ther 108:129–148PubMedCrossRefGoogle Scholar
  36. 36.
    Jaspard E, Wei L, Alhenc-Gelas F (1993) Differences in the properties and enzymatic specificities of the two active sites of angiotensin I-converting enzyme (kininase II). Studies with bradykinin and other natural peptides. J Biol Chem 268:9496–9503PubMedGoogle Scholar
  37. 37.
    Jongun L (2004) Reciprocal regulation of angiotensin converting enzyme and neutral endopeptidase in rats with experimental hypertension. Physiol Res 53:365–368Google Scholar
  38. 38.
    Joshi DD, Dang A, Yadav P, Qian J, Bandari PS, Chen K, et al. (2001) Negative feedback on the effects of stem cell factor on hematopoiesis is partly mediated through neutral endopeptidase activity on substance P: a combined functional and proteomic study. Blood 98:2697–2706PubMedCrossRefGoogle Scholar
  39. 39.
    Khatib AM, Siegfried G, Chretien M, Metrakos P, Seidah NG (2002) Proprotein convertases in tumor progression and malignancy: novel targets in cancer therapy. Am J Pathol 160:1921–1935PubMedGoogle Scholar
  40. 40.
    Kikwai L, Babu RJ, Kanikkannan N, Singh M (2004) Preformulation stability of Spantide II, a promising topical anti-inflammatory agent for the treatment of psoriasis and contact dermatitis. J Pharm Pharmacol 56:19–25PubMedCrossRefGoogle Scholar
  41. 41.
    Kim EJ, Hess S, Richardson SK, Newton S, Showe LC, Benoit BM, et al. (2005) Immunopathogenesis and therapy of cutaneous T cell lymphoma. J Clin Invest 115:798–812PubMedGoogle Scholar
  42. 42.
    Koenig S, Luger TA, Scholzen TE (2006) Monitoring neuropeptide-specific proteases: processing of the proopiomelanocortin peptides adrenocorticotropin and α-melanocyte-stimulating hormone in the skin. Exp Dermatol 15:751–761CrossRefGoogle Scholar
  43. 43.
    Kohlstedt K, Brandes RP, Muller-Esterl W, Busse R, Fleming I (2004) Angiotensin-converting enzyme is involved in outside-in signaling in endothelial cells. Circ Res 94:60–67PubMedCrossRefGoogle Scholar
  44. 44.
    Krege JH, John SW, Langenbach LL, Hodgin JB, Hagaman JR, Bachman ES, et al. (1995) Male-female differences in fertility and blood pressure in ACE-deficient mice. Nature 375:146–148PubMedCrossRefGoogle Scholar
  45. 45.
    Lambrecht BN (2001) Immunologists getting nervous: neuropeptides, dendritic cells and T cell activation. Respir Res 2:133–138PubMedCrossRefGoogle Scholar
  46. 46.
    Lapteva N, Nieda M, Ando Y, Ide K, Hatta-Ohashi Y, Dymshits G, et al. (2001) Expression of renin-angiotensin system genes in immature and mature dendritic cells identified using human cDNA microarray. Biochem Biophys Res Commun 285:1059–1065PubMedCrossRefGoogle Scholar
  47. 47.
    Lapteva N, Ide K, Nieda M, Ando Y, Hatta-Ohashi Y, Minami M, et al. (2002) Activation and suppression of renin-angiotensin system in human dendritic cells. Biochem Biophys Res Commun 296:194–200PubMedCrossRefGoogle Scholar
  48. 48.
    Marcic B, Deddish PA, Skidgel RA, Erdos EG, Minshall R, Tan F (2000) Replacement of the transmembrane anchor in angiotensin I-converting enzyme (ACE) with a glycosylphos-phatidylinositol tail affects activation of the B2 bradykinin receptor by ACE inhibitors. J Biol Chem 275:16110–16118PubMedCrossRefGoogle Scholar
  49. 49.
    Mazurkiewicz JE, Corliss D, Slominski A (1999) Differential temporal and spatial expression of POMC mRNA and of the production of POMC peptides during the murine hair cycle. Ann NY Acad Sci 885:427–429PubMedGoogle Scholar
  50. 50.
    Mbikay M, Seidah NG, Chretien M (2001) Neuroendocrine secretory protein 7B2: structure, expression and functions. Biochem J 357:329–342PubMedCrossRefGoogle Scholar
  51. 51.
    Miyoshi S, Nakazawa H, Kawata K, Tomochika K, Tobe K, Shinoda S (1998) Characterization of the hemorrhagic reaction caused by Vibrio vulnificus metalloprotease, a member of the thermolysin family. Infect Immun 66:4851–4855PubMedGoogle Scholar
  52. 52.
    Miyoshi S, Watanabe H, Kawase T, Yamada H, Shinoda S (2004) Generation of active fragments from human zymogens in the bradykinin-generating cascade by extracellular proteases from Vibrio vulnificus and V. parahaemolyticus. Toxicon 44:887–893PubMedCrossRefGoogle Scholar
  53. 53.
    Morabito F, Mangiola M, Rapezzi D, Zupo S, Oliva BM, Ferraris AM, et al. (2003) Expression of CD10 by B-chronic lymphocytic leukemia cells undergoing apoptosis in vivo and in vitro. Haematologica 88:864–873PubMedGoogle Scholar
  54. 54.
    Morihara K, Takai S, Takenaka H, Sakaguchi M, Okamoto Y, Morihara T, et al. (2006) Cutaneous tissue angiotensin-converting enzyme may participate in pathologic scar formation in human skin. J Am Acad Dermatol 54:251–257PubMedCrossRefGoogle Scholar
  55. 55.
    Morrison ME, Vijayasaradhi S, Engelstein D, Albino AP, Houghton AN (1993) A marker for neoplastic progression of human melanocytes is a cell surface ectopeptidase. J Exp Med 177:1135–1143PubMedCrossRefGoogle Scholar
  56. 56.
    Nahmod KA, Vermeulen ME, Raiden S, Salamone G, Gamberale R, Fernandez-Calotti P, et al. (2003) Control of dendritic cell differentiation by angiotensin II. FASEB J 17:491–493PubMedGoogle Scholar
  57. 57.
    Nakamura M, Toyoda M, Morohashi M (2003) Pruritogenic mediators in psoriasis vulgaris: comparative evaluation of itch-associated cutaneous factors. Br J Dermatol 149:718–730PubMedCrossRefGoogle Scholar
  58. 58.
    Narducci MG, Scala E, Bresin A, Caprini E, Picchio MC, Remotti D, et al. (2006) Skin homing of Sezary cells involves SDF-1-CXCR4 signaling and down-regulation of CD26/dipeptidylpeptidase IV Blood 107:1108–1115PubMedCrossRefGoogle Scholar
  59. 59.
    Nemoto E, Sugawara S, Takada H, Shoji S, Horiuch H (1999) Increase of CD26/dipeptidyl peptidase IV expression on human gingival fibroblasts upon stimulation with cytokines and bacterial components. Infect Immun 67:6225–6233PubMedGoogle Scholar
  60. 60.
    Novelli M, Savoia P, Fierro MT, Verrone A, Quaglino P, Bernengo MG (1996) Keratinocytes express dipeptidyl-peptidase IV (CD26) in benign and malignant skin diseases. Br J Dermatol 134:1052–1056PubMedCrossRefGoogle Scholar
  61. 61.
    Okamoto A, Lovett M, Payan DG, Bunnett NW (1994) Interactions between neutral endopeptidase (EC and the substance P (NK1) receptor expressed in mammalian cells. Biochem J 299:683–693PubMedGoogle Scholar
  62. 62.
    Olerud JE, Usui ML, Seckin D, Chiu DS, Haycox CL, Song IS, et al. (1999) Neutral endopeptidase expression and distribution in human skin and wounds. J Invest Dermatol 112:873–881PubMedCrossRefGoogle Scholar
  63. 63.
    Ozkur M, Erbagci Z, Nacak M, Tuncel AA, Alasehirli B, Aynacioglu AS (2004) Association of insertion/deletion polymorphism of the angiotensin-converting enzyme gene with psoriasis. Br J Dermatol 151:792–795PubMedCrossRefGoogle Scholar
  64. 64.
    Paus R, Heinzelmann T, Schultz KD, Furkert J, Fechner K, Czarnetzki BM (1994) Hair growth induction by substance P. Lab Invest 71:134–140PubMedGoogle Scholar
  65. 65.
    Peters EMJ, Ericson ME, Hosoi J, Seiffert K, Hordinsky MK, Ansel JC, et al. (2006) Neuropeptide control mechanisms in cutaneous biology: physiological and clinical significance. J Invest Dermatol 126:1937–1947PubMedCrossRefGoogle Scholar
  66. 66.
    Pickering TG (2002) The rise and fall of omapatrilat. J Clin Hypertens 4:371–373CrossRefGoogle Scholar
  67. 67.
    Roesch A, Wittschier S, Becker B, Landthaler M, Vogt T (2006) Loss of dipeptidyl peptidase IV immunostaining discriminates malignant melanomas from deep penetrating nevi. Mod Pathol 19:1378–1385PubMedCrossRefGoogle Scholar
  68. 68.
    Roosterman D, Goerge T, Schneider SW, Bunnett NW, Steinhoff M (2006) Neuronal control of skin function: the skin as aneuroimmunoendocrine organ. Physiol Rev 86:1309–1379PubMedCrossRefGoogle Scholar
  69. 69.
    Roques BP, Noble F, Dauge V, Fournie-Zaluski MC, Beaumont A (1993) Neutral endopeptidase 24.11: structure, inhibition, and experimental and clinical pharmacology. Pharmacol Rev 45:87–146PubMedGoogle Scholar
  70. 70.
    Ryder KW, Epinette WW, Jay SJ, Ransburg RC, Glick MR (1985) Serum angiotensin converting enzyme activity in patients with psoriasis. Clin Chim Acta 153:143–146PubMedCrossRefGoogle Scholar
  71. 71.
    Scamuffa N, Calvo F, Chretien M, Seidah NG, Khatib AM (2006) Proprotein convertases: lessons from knockouts. FASEB J 20:1954–1963PubMedCrossRefGoogle Scholar
  72. 72.
    Scheel-Toellner D, Richter E, Toellner KM, Reiling N, Wacker HH, Flad HD, et al. (1995) CD26 expression in leprosy and other granulomatous diseases correlates with the production of interferon-gamma. Lab Invest 73:685–690PubMedGoogle Scholar
  73. 73.
    Schiller M, Brzoska T, Bohm M, Metze D, Scholzen TE, Rougier A, et al. (2004) Solar-simulated ultraviolet radiation-induced upregulation of the melanocortin-1 receptor, proopiomelanocortin, and pha-melanocyte-stimulating hormone in human epidermis in vivo. J Invest Dermatol 122:468–476PubMedCrossRefGoogle Scholar
  74. 74.
    Scholzen T, Armstrong CA, Bunnett NW, Luger TA, Olerud JE, Ansel JC (1998) Neuropeptides in the skin: interactions between the neuroendocrine and the skin immune systems. Exp Dermatol 7:81–96PubMedCrossRefGoogle Scholar
  75. 75.
    Scholzen TE, Luger TA (2004) Neutral endopeptidase and angiotensin-converting enzyme — key enzymes terminating the action of neuroendocrine mediators. Exp Dermatol 13:22–26PubMedCrossRefGoogle Scholar
  76. 76.
    Scholzen TE, Kalden D-H, BrzoskaT, Fastrich M, Schwarz T, Schiller M, et al. (2000) Expression of proopiomelanocortin peptides in human dermal microvascular endothelial cells: evidence for a regulation by ultraviolet light and interleukin-1. J Invest Dermatol 115:1021–1028PubMedCrossRefGoogle Scholar
  77. 77.
    Scholzen TE, Steinhoff M, Bonaccorsi P, Klein R, Amadesi S, Geppetti P, et al. (2001) Neutral endopeptidase terminates substance P-induced inflammation in allergic contact dermatitis. J Immunol 166:1285–1291PubMedGoogle Scholar
  78. 78.
    Scholzen TE, Stander S, Riemann H, Brzoska T, Luger TA (2003) Modulation of cutaneous inflammation by angiotensin-converting enzyme. J Immunol 170:3866–3873PubMedGoogle Scholar
  79. 79.
    Scholzen TE, Steinhoff M, Sindrilaru A, Schwarz A, Bunnett NW, Luger TA, et al. (2004) Cutaneous allergic contact dermatitis responses are diminished in mice deficient in neurokinin 1 receptors and augmented by neurokinin 2 receptor blockage. FASEB J 18:1007–1009PubMedGoogle Scholar
  80. 80.
    Scott JR, Muangman PR, Tamura RN, Zhu KQ, Liang Z, Anthony J, et al. (2005) Substance P levels and neutral endopeptidase activity in acute burn wounds and hypertrophic scar. Plast Reconstr Surg 115:1095–1102PubMedCrossRefGoogle Scholar
  81. 81.
    Seidah NG, Benjannet S, Hamelin J, Marmabachi AM, Basak A, Marcinkiewicz J, et al. (1999) The subtilisin/ kexin family of precursor convertases: emphasis on PC1, PC2/7B2, POMC and the novel enzyme SKI-1. Ann NY Acad Sci 885:57–74PubMedCrossRefGoogle Scholar
  82. 82.
    Seitzer U, Scheel-Toellner D, Hahn M, Heinemann G, Mattern T, Flad HD, et al. (1997) Comparative study of CD26 as a Thl-like and CD30 as a potential Th2-like operational marker in leprosy. Adv Exp Med Biol 421:217–221PubMedGoogle Scholar
  83. 83.
    Sherman LA, Burke TA, Biggs JA (1992) Extracellular processing of peptide antigens that bind class I major histocompatibility molecules. J Exp Med 175:1221–1226PubMedCrossRefGoogle Scholar
  84. 84.
    Shipp MA, Look AT (1993) Hematopoietic differentiation antigens that are membrane-associated enzymes: cutting is the key! Blood 82:1052–1070PubMedGoogle Scholar
  85. 85.
    Simeoni L, Rufini A, Moretti T, Forte P, Aiuti A, Fantoni A (2002) Human CD26 expression in transgenic mice affects murine T-cell populations and modifies their subset distribution. Hum Immunol 63:719–730PubMedCrossRefGoogle Scholar
  86. 86.
    Skidgel RA, Erdos EG (2004) Angiotensin converting enzyme (ACE) and neprilysin hydrolyze neuropeptides: a brief history, the beginning and follow-ups to early studies. Peptides 25:521–525PubMedCrossRefGoogle Scholar
  87. 87.
    Slominski A, Wortsman J, Luger TA, Paus R, Solomon SG (2000) Corticotropin releasing hormone and proopi-omelanocortin involvement in the cutaneous response to stress. Physiol Rev 80:979–1020PubMedGoogle Scholar
  88. 88.
    Sokolowska-Wojdylo M, Wenzel J, Gaffal E, Steitz J, Roszkiewicz J, Bieber T, et al. (2005) Absence of CD26 expression on skin-homing CLA+ CD4+ T lymphocytes in peripheral blood is a highly sensitive marker for early diagnosis and therapeutic monitoring of patients with Sezary syndrome. Clin Exp Dermatol 30:702–706PubMedCrossRefGoogle Scholar
  89. 89.
    Steckelings UM, Czarnetzki BM (1995) The renin-angiotensin-system in the skin. Evidence for its presence and possible functional implications. Exp Dermatol 4:329–334PubMedCrossRefGoogle Scholar
  90. 90.
    Steckelings UM, Artuc M, Paul M, Stoll M, Henz BM (1996) Angiotensin II stimulates proliferation of primary human keratinocytes via a non-ATI, non-AT2 angiotensin receptor. Biochem Biophys Res Commun 229:329–333PubMedCrossRefGoogle Scholar
  91. 91.
    Steckelings UM, Artuc M, Wollschlager T, Wiehstutz S, Henz BM (2001) Angiotensin-converting enzyme inhibitors as inducers of adverse cutaneous reactions. Acta Derm Venereol 81:321–325PubMedCrossRefGoogle Scholar
  92. 92.
    Steckelings UM, Wollschlager T, Peters J, Henz BM, Hermes B, Artuc M (2004) Human skin: source of and target organ for angiotensin II. Exp Dermatol 13:148–154PubMedCrossRefGoogle Scholar
  93. 93.
    Steinman L (2004) Elaborate interactions between the immune and nervous systems. Nat Immunol 5:575–581PubMedCrossRefGoogle Scholar
  94. 94.
    Sturiale S, Barbara G, Qui B, Figini M, Geppetti P, Gerard N, et al. (1999) Neutral endopeptidase (EC terminates colitis by degrading SP. Proc Natl Acad Sci USA 96:11653–11658PubMedCrossRefGoogle Scholar
  95. 95.
    Sumitomo M, Shen R, Nanus DM (2005) Involvement of neutral endopeptidase in neoplastic progression. Biochim Biophys Acta 1751:52–59PubMedGoogle Scholar
  96. 96.
    Thomas JE, Rylett CM, Carhan A, Bland ND, Bingham RJ, Shirras AD, et al. (2005) Drosophila melanogaster NEP2 is a new soluble member of the neprilysin family of endopeptidases with implications for reproduction and renal function. Biochem J 386:357–366PubMedCrossRefGoogle Scholar
  97. 97.
    Toyoda M, Morohashi M (2003) New aspects in acne inflammation. Dermatology 206:17–23PubMedCrossRefGoogle Scholar
  98. 98.
    Toyoda M, Makino T, Kagoura M, Morohashi M (2001) Expression of neuropeptide-degrading enzymes in alopecia areata: an immunohistochemical study. Br J Dermatol 144:46–54PubMedCrossRefGoogle Scholar
  99. 99.
    Turner AJ, Hooper NM (2002) The angiotensin-converting enzyme gene family: genomics and pharmacology. Trends Pharmacol Sci 23:177–183PubMedCrossRefGoogle Scholar
  100. 100.
    Turner AJ, Isaac RE, Coates D (2001) The neprilysin (NEP) family of zinc metalloendopeptidases: genomics and function. Bioessays 23:261–269PubMedCrossRefGoogle Scholar
  101. 101.
    Van den Oord JJ (1998) Expression of CD26/dipeptidyl-peptidase IV in benign and malignant pigment-cell lesions of the skin. Br J Dermatol 138:615–621PubMedCrossRefGoogle Scholar
  102. 102.
    Velazquez EF, Yancovitz M, Pavlick A, Berman R, Shapiro R, Bogunovic D, et al. (2007) Clinical relevance of neutral endopeptidase (NEP/CD10) in melanoma. J Transi Med 5:2CrossRefGoogle Scholar
  103. 103.
    Wang XM, Yu DM, McCaughan GW, Gorrell MD (2006) Extra-enzymatic roles of DPIV and FAP in cell adhesion and migration on collagen and fibronectin. Adv Exp Med Biol 575:213–222PubMedCrossRefGoogle Scholar
  104. 104.
    Watts C, Matthews SP, Mazzeo D, Manoury B, Moss CX (2005) Asparaginyl endopeptidase: case history of a class II MHC compartment protease. Immunol Rev 207:218–228PubMedCrossRefGoogle Scholar
  105. 105.
    Wei L, Clauser E, henc-Gelas F, Corvol P (1992) The two homologous domains of human angiotensin I-converting enzyme interact differently with competitive inhibitors. J Biol Chem 267:13398–13405PubMedGoogle Scholar
  106. 106.
    Wesley UV, McGroarty M, Homoyouni A (2005) Dipeptidyl peptidase inhibits malignant phenotype of prostate cancer cells by blocking basic fibroblast growth factor signaling pathway. Cancer Res 65:1325–1334PubMedCrossRefGoogle Scholar
  107. 107.
    Wolf R, Tamir A, Brenner S (1990) Psoriasis related to angiotensin-converting enzyme inhibitors. Dermatologica 181:51–53PubMedCrossRefGoogle Scholar
  108. 108.
    Yellen-Shaw AJ, Laughlin CE, Metrione RM, Eisenlohr LC (1997) Murine transporter associated with antigen presentation (TAP) preferences influence class I-restricted T cell responses. J Exp Med 186:1655–1662PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • T. E. Scholzen
    • 1
  1. 1.Ludwig-Boltzmann Institute of Cell Biology and Immunobiology of the Skin Department of DermatologyUniversity of MünsterMünsterGermany

Personalised recommendations