Advertisement

Shock Waves pp 597-602 | Cite as

Heat transfer modelling to catalytic protection systems of space vehicles entering into martian atmosphere

  • V. Kovalev
  • N. Afonina
  • V. Gromov
Conference paper

Abstract

A kinetic model of heterogeneous recombination in dissociated carbon dioxide on high-temperature heat-shield coatings is developed; the model takes into account the nonequilibrium adsorption-desorption reactions of oxygen atoms and their recombination in the Eley-Rideal and Langmuir-Hinshelwood reactions. On the basis of a comparison of the calculated heat fluxes in dissociated carbon dioxide with those measured in plasma generator and the available literature data, the parameters of the catalysis model are chosen for the glassy coating of the Buran orbiter tile heat shield based on the SiO2-B2O3-SiB4 system. The effects of heteroge- neous recombination proceeding in accordance with the processes involving carbon atoms and those involving physically adsorbed oxygen atoms, on the heat fluxes to the glassy coating are analyzed on the surface temperature range from 300 to 2000° K.

Keywords

Heat Flux Catalytic Surface Martian Atmosphere Test Regime Adsorb Oxygen Atom 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V.L. Kovalev: Heterogeneous Catalytic Processes in Aerothermodynamics. (Physmatlit, Moscow 2002)Google Scholar
  2. 2.
    Y.-K. Chen, W.D. Henline, D.A. Stewart, G.V. Candler: J. Spacecraft Rockets 30, 32 (1993)ADSCrossRefGoogle Scholar
  3. 3.
    R.A. Mitcheltree, P.A. Gnoffo: J. Spacecraft Rockets 32, 771 (1995)ADSCrossRefGoogle Scholar
  4. 4.
    R.N. Gupta, K.P. Lee, CD. Scott: J. Spacecraft Rockets 33, 61 (1996)ADSCrossRefGoogle Scholar
  5. 5.
    N.E. Afonina, V.G. Gromov, V.L. Kovalev: AIAA Paper 01-2832 (2001)Google Scholar
  6. 6.
    N.G. Bykova, S.A. Vasil’evskii et al.: Izv. Ross. Akad. Nauk, Mekh. Zhidk. Gaza 6, 144 (1997)Google Scholar
  7. 7.
    Y.C. Kim, M. Boudart: Langmuir 7, 2999 (1991)CrossRefGoogle Scholar
  8. 8.
    B.F. Gordiets, CM. Fereira: AIAA J 36, 1643 (1998)ADSCrossRefGoogle Scholar
  9. 9.
    F. Nasuti, M. Barbato, C. Bruno: J. Thermophysics Heat Transfer 10, 131 (1996)CrossRefGoogle Scholar
  10. 10.
    M.I. Yakushin, A.F. Kolesnikov et al.: Report on ISTC project No. 036, Moscow State University, Institute of Mechanics, Moscow (1998)Google Scholar
  11. 11.
    A.F. Kolesnikov, LS. Pershin et al.: J. Spacecraft Rockets 37, 573 (2000)ADSCrossRefGoogle Scholar
  12. 12.
    N.E. Afonina, V.G. Gromov: Preprint No. 31-97, Moscow State University, Institute of Mechanics (1997)Google Scholar
  13. 13.
    V.D. Berkut, V.M. Droshenko et al.: Nonequilibrium Physical and Chemical Processes in Hypersonic Aerodynamics. (Energoizdat, Moscow 1994)Google Scholar
  14. 14.
    A. Daiss, H.H. Frühauf, E.W. Messerschmidt: J. Thermophysics Heat Transfer 11, 346 (1997)CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • V. Kovalev
    • 1
  • N. Afonina
    • 1
  • V. Gromov
    • 1
  1. 1.Moscow State University named after M.V. LomonosovMoscowRussia

Personalised recommendations