Advertisement

Shock Waves pp 319-327 | Cite as

End-to-end modelling of the HEG shock tunnel

  • P. A. Jacobs
  • A. D. Gardner
  • D. R. Buttsworth
  • J. Martinez Schramm
  • S. Karl
  • K. Hannemann
Conference paper

Abstract

We demonstrate an end-to-end computational model of the HEG shock tunnel as a way to extract more precise test flow conditions and as a way of getting predictions of new operating conditions. For a selection of established operating conditions, the Lid program was used to simulate the one-dimensional gas-dynamic processes within the whole of the facility. The program reproduces the compression tube performance reliably and, with the inclusion of a loss factor near the upstream-end of the compression tube, it provides a good estimate of the equilibrium pressure in the shock-reflection region over the set of six standard operating conditions for HEG.

Keywords

Shock Tube Incident Shock Shock Speed Orifice Plate Shock Tunnel 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

erences

  1. 1.
    M. K. Mcintosh: Computer program for the numerical calculation of frozen and equilibrium conditions in shock tunnels. Department of Physics Unpublished Technical Report, Australian National University, Canberra, 1968Google Scholar
  2. 2.
    J. A. Copper: Experimental investigation of the equilibrium interface technique. The Physics of Fluids 5(7), 844 (1962)ADSCrossRefGoogle Scholar
  3. 3.
    J. Mclntyre, J. R. Maus, M. L. Laster, and G. Eitelberg: ‘Comparison of the Flow in the High-enthalpy Shock Tunnel in Göttingen with Numerical Simulations’. In: Proceedings of the 19th ISSW, Volume 1, Berlin, July 1993, R. Brun and L. Z. Dumitrescu, editors, (Springer-Verlag) pp.251-256Google Scholar
  4. 4.
    K. Itoh, K. Tani, H. Tanno, M. Takahashi, Miyajima H., T. Asano, A. Saso, and K. Takayama: ‘A Numerical and Experimental Study of Free Piston Shock Tunnel’. In: 19th International Symposium on Shock Waves, Marseille Prance 1993 Google Scholar
  5. 5.
    K. Tani, K. Itoh, M. Takahashi, H. Tanno, T. Komuro, and H. Miyajima: Numerical study of free-piston shock tunnel performance. Shock Waves 3, 313 (1994)ADSCrossRefGoogle Scholar
  6. 6.
    K. Itoh, S. Ueda, T. Komuro, K. Sato, M. Takahashi, H. Miyajima, H. Tanno, and H. Muramoto: Improvement of a free piston driver for a high-enthalpy tunnel. Shock Waves 8, 215 (1998)ADSCrossRefGoogle Scholar
  7. 7.
    H. Tanno, K. Itoh, T. Komuro, and K. Sato: Experimental study on the tuned operation of a free piston driver. Shock Waves 10, 1 (2000)ADSCrossRefGoogle Scholar
  8. 8.
    J. Maus, J. Blanks, and J. Dewitt: Calibration tests of a new free-piston shock tunnel. AIAA Paper 93-5003 (1993)Google Scholar
  9. 9.
    J. Lacey and D. Long: A wave diagram computational method with application to a free-piston shock tube. AIAA Paper 90-1378 (1990)Google Scholar
  10. 10.
    J. Maus, M. Laster, and H. Hornung: The G-range impulse facility. A high-performance free-piston shock tunnel. AIAA Paper 92-3946 (1992)Google Scholar
  11. 11.
    L. Labracherie, M. P. Dumitrescu, Y. Burtschell, and L. Houas: On the compression process in a free-piston shock-tunnel. Shock Waves, 3(1), 19 (1993)ADSCrossRefGoogle Scholar
  12. 12.
    P. A. Jacobs: Quasi-one-dimensional modelling of a free-piston shock tunnel. AIAA Journal 32(1), 137 (1994)ADSCrossRefGoogle Scholar
  13. 13.
    P. A. Jacobs: L1d: A computer program for the simulation of transient-flow facilities. Department of Mechanical Engineering Report 1/99, The University of Queensland, Brisbane, Australia, January (1999)Google Scholar
  14. 14.
    P. J. Petrie-Repar and P. A. Jacobs: A computational study of shock speeds in high performance shock tubes. Shock Waves 8(2), 79 (1998)ADSCrossRefGoogle Scholar
  15. 15.
    P. A. Jacobs, R. G. Morgan, R. J. Stalker, and D. J. Mee: ‘Use of Argon-helium Driver-gas Mixtures in the T4 Shock Tunnel’. In: 19th International Symposium on Shock Waves, Marseille, Prance. (Springer-Ver lag, 1993)Google Scholar
  16. 16.
    S. P. Sharma and G. J. Wilson: Computations of axisymmetric flows in hypersonic shock tubes. AIAA Journal of Thermophysics and Heat Transfer 10(1), 169 (1996)CrossRefGoogle Scholar
  17. 17.
    R. S. M. Chue and G. Eitelberg: Studies of the transient flows in high enthalpy shock tunnels. Experiments in Fluids 25, 474 (1998)ADSCrossRefGoogle Scholar
  18. 18.
    G. Eitelberg: First results of calibration and use of the HEG. AIAA Paper 94-2535 (1994)Google Scholar
  19. 19.
    P. A. Jacobs, A. D. Gardner, and K. Hannemann: Gas-dynamic modelling of the HEG shock tunnel. Report DLR-IB 224-2003 A02, Deutsches Zentrum für Luft-und Raumfahrt E.V., Göttingen, Germany, January 2003Google Scholar
  20. 20.
    B. J. McBride and S. Gordon: Computer program for calculation of complex chemical equilibrium compositions and applications II. Users manual and program description. Reference Publication 1311, NASA, June 1996Google Scholar
  21. 21.
    T. J. Mclntyre and C. Atcitty: Pistons and compression tubes— piston motions in the high enthalpy shock tunnel (HEG). Report IB222-90A20, Institute of Experimental Flow Mechanics, DLR, Göttingen, March 1991Google Scholar
  22. 22.
    K. Hannemann, J. Martinez Schramm, S. Karl, and W. Beck: Cylinder shock layer density profiles measured in high enthalpy flows in HEG. AIAA Paper 2002-2913 (2002)Google Scholar
  23. 23.
    K. Hannemann, V. Hannemann, S. Brück, R. Radespiel, and G.S.R. Sarma: ‘Computational Modelling for High Enthalpy Flows’. In: SAMS Vol. 34. (Overseas Publishers Association, 1999), pp.253–277zbMATHGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • P. A. Jacobs
    • 1
    • 2
    • 3
  • A. D. Gardner
    • 1
    • 2
    • 3
  • D. R. Buttsworth
    • 1
    • 2
    • 3
  • J. Martinez Schramm
    • 1
    • 2
    • 3
  • S. Karl
    • 1
    • 2
    • 3
  • K. Hannemann
    • 1
    • 2
    • 3
  1. 1.Centre for HypersonicsThe University of QueenslandBrisbaneAustralia
  2. 2.Institute for Aerodynamics and Flow TechnologyGerman Aerospace CenterGöttingenGermany
  3. 3.Faculty of Engineering and SurveyingUniversity of Southern QueenslandToowoombaAustralia

Personalised recommendations