Advertisement

Shock Waves pp 185-190 | Cite as

Non-conventional dissociation rate in non-equilibrium boundary layer

  • N. Belouaggadia
  • R. Brun
  • T. Saito
  • K. Takayama
Conference paper

Abstract

The interaction between vibrational excitation and chemical reactions in high temperature flows is examined through an example of a typical boundary-layer, i.e. the thermal layer generated by a shock wave reflecting at the end-wall of a shock-tube. During the development of this boundary-layer in space and time, particular features are pointed out, like the existence of a freezing zone close to the wall, responsible of dissociation rate constants remaining significant in this zone where the translational temperature is decreasing. The catalytic role of the wall is also examined and its influence is important on the vibrational temperature profiles and therefore on the rate constants themselves.

Keywords

Boltzmann Equation Dissociation Rate Incident Shock Hypersonic Flow Vibrational Relaxation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P.V. Marrone, C.E. Treanor: Phys. Fluids 6(9), 1215 (1963)ADSCrossRefGoogle Scholar
  2. 2.
    S.O. Macheret, J.W. Rich: AIAA Paper 93, 2860 (1993)Google Scholar
  3. 3.
    E.A. Kovach, S.A. Losev, A.L. Sergievskaia: Chem. Phys. Rev. 14(5), 1353 (1995)Google Scholar
  4. 4.
    S.O. Macheret, A.A. Fridmann, I.V. Adamovich, J.W. Rich, C.E. Treanor: AIAA Paper 94-1984 (1994)Google Scholar
  5. 5.
    N.B. Kuznetsov: Sov. J. Theor. Exp. 7(1), 22 (1971)Google Scholar
  6. 6.
    C.E. Treanor, P.V. Marrone: Phys. Fluids 5(9), 1022 (1962)ADSCrossRefGoogle Scholar
  7. 7.
    C. Park: J. Therm. Heat. Transf. 2(1), 8 (1988)ADSCrossRefGoogle Scholar
  8. 8.
    M.N. Kogan, V.S. Galkin, N.K. Makashev: ‘Generalized Chapman-Enskog Method-Derivation of the Nonequilibrium Gas Dynamics Equations’. In: Rarefied gas Dynamics, ed by R. Camparague (CEA Paris 1979) pp.693–734Google Scholar
  9. 9.
    R. Brun, M.P. Vila, J.G. Méolans: In: Rarefied Gas Dynamics, ed. by M. Oguchi (Univ Tokyo Press, Tokyo, 1984) pp.593–599Google Scholar
  10. 10.
    N. Belouaggadia, R. Brun: J Therm Heat Transf 12(4), 482 (1998)CrossRefGoogle Scholar
  11. 11.
    C. Park: ‘Review of Finite-Rate Chemistry Models for Air Dissociation and Ionisation’. In: Molecular Physics and Hypersonic Flows, ed. by M. Capitelli (NATO.ASI Series, Kluwer Acad Pub 1996) pp.581–596Google Scholar
  12. 12.
    R. Brun: AIAA Paper 88-2655 (1988)Google Scholar
  13. 13.
    R. Brun: ‘Transport Phenomena in Relaxing Gas Mixtures: Models and Applications’. In: Beylich AE (ed) Rarefied Gas Dynamics, ed. by A.E. Beylich (VCH Verlagsgesellschaft mbh, Weinheim 1991) pp.379–390Google Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • N. Belouaggadia
    • 1
  • R. Brun
    • 2
  • T. Saito
    • 3
  • K. Takayama
    • 3
  1. 1.Université Hassan II.MohammediaMorocco
  2. 2.Université d’Aix-MarseilleFrance
  3. 3.University of SendaiJapan

Personalised recommendations