Shock Waves pp 161-166 | Cite as

Integration property of a wedge-elliptic cone waverider with scramjet engine

  • H. Liu
  • F. M. Wang
  • L. W. Li
  • Y. B. Geng
Conference paper


The hypersonic waverider forebody is designed in this paper. For the present waverider, the undersurface is carved out as a stream surface of a hypersonic inviscid flow field around wedge-elliptic cone, and the upper surface is assumed to be a freestream surface. A finite-volume code is used to generate the three-dimensional flow field. The leading edge is determined by satisfying the condition that the lip is situated at the intersection line of shocks.


Shock Wave Flow Field AIAA Paper Wedge Angle Pressure Contour 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    T. R. F. Nonweiler: Aerodynamic problems of manned space vechile. Journal of the Royal Aeronautical Society 63, (1959)Google Scholar
  2. 2.
    J. Seddon and A. Spence: ‘The Use of Known Flow Fields as an Approach to the Design of High Speed Aircraft’. In: Hypersonic Boundary Layers and Flow Field, AG ARD CP NO. 30, May 1968, pp. 10/1–10/21Google Scholar
  3. 3.
    J. G. Jones, K. C. Moore, J. Pike and P. L. Roe: A method for designing lifting configurations for high supersonic speeds, using axisymmetric flow field. Ingenieur-Archiv 37, 56Google Scholar
  4. 4.
    M. L. Rasmussen: Waverider configurations derived from inclined circular and elliptic cones. J. of Spacecraft and Rockers 17(6), 537 (1980)ADSCrossRefGoogle Scholar
  5. 5.
    M. L. Rasmussen and L. W. Clement: Cone-derived waveriders with longitudinal curvature. AIAA Paper No. 84-2100 (1984)Google Scholar
  6. 6.
    J. D. Cole and T. F. Zien: A class of three-dimensional optimum hypersonic wings. AIAA Journal 7(2), 264 (1969)ADSCrossRefGoogle Scholar
  7. 7.
    B. S. Kim, M. L. Rasmussen and M. C. Jischke: Optimization of waverider configurations generated from axisymmetric conical flows. AIAA Paper 82-1299 (1982)Google Scholar
  8. 8.
    K. G. Bowcutt, J. D. Anderson and D. P. Capriotti: Viscous optimized hypersonic waveriders. AIAA Paper 87-0272 (1987)Google Scholar
  9. 9.
    K. G. Bowcutt, J. D. Anderson and D. P. Capriotti: ‘Numberical Optimization of Conical Flow Waveriders Including Detailed Viscous Effects’. In: Aerodynamics of Hypersonic Lifting Vehicles, AGARD-CPP-428, March 1987, pp21/l–27/23Google Scholar
  10. 10.
    J. D. Anderson: A survey of modern reseach in hypersonics. AIAA Paper 84-1578 (1984)Google Scholar
  11. 11.
    L. H. Towend: Research and design for lifting reentry. Progress in Aerospace Sciences 18, 1 (1979)ADSCrossRefGoogle Scholar
  12. 12.
    S. Corda and J. D. Anderson: Viscous optimized waveriders designed from axisymmetric flow field. AIAA Paper 88-0369 (1988)Google Scholar
  13. 13.
    S. Bauer: ‘Analysis of Two Viscous Optimized Waveriders’. In: First International Hypersonic Waverider Symposium, Univ. of Maryland, College Park, Oct. 1999 Google Scholar
  14. 14.
    N. Takashim and M. J. Lewis: Nervier-stokes computation of a viscous optimized waverider. AIAA Paper 92-0305 (1992)Google Scholar
  15. 15.
    M. K. L. O’Neill and M. J. Lewis: Optimized scramjet integration on a waverider. AIAA Paper 91-1693 (1991)Google Scholar
  16. 16.
    M. J. Lewis and J. S. Chang: Joint jet-a/silane/hydrogen reaction mechanism. Journal of Propulsion and Power 6(2), 200Google Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • H. Liu
    • 1
  • F. M. Wang
    • 1
  • L. W. Li
    • 1
  • Y. B. Geng
    • 1
  1. 1.Institute of MechanicsChinese academy of SciencesBeijingChina

Personalised recommendations