Shock Waves pp 1187-1192 | Cite as

Numerical study of reactive flow in an over-expanded nozzle: influence of wall temperature and altitude

  • L. Meister
  • Y. Burtschell
  • D. E. Zeitoun
Conference paper


Université de Provence, Ecole Polytechnique Universitaire de Marseille, Département Mécanique Energétique, 5, rue Enrico Fermi, 13453 Marseille Cedex, France Abstract. A numerical study of reactive flow in a two dimensional axisymmetric nozzle, which ejects burnt gases out of a combustion chamber is presented. The lower pressure of ejected gases is adapted to higher ambient air by means of an oblique shock. This oblique shock leads to a boundary layer detachment and a fresh air re-circulation between the shear layer and the nozzle wall. In this mixing zone, the air flow oxygen reacts with burnt gases, whose composition is rich in hydrogen, reaction which is strongly exothermic. The increasing temperature may damage nozzle wall and leads to a performance reduction for the engine. The numerical method is based on a finite volume scheme and allows the resolution of Navier-Stokes equations for unsteady, compressible flows, taking into account the chemical reactions.


Shear Layer Wall Temperature Reactive Flow Oblique Shock Nozzle Wall 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. Benay, R Servel: Modélisation du décollement dans les tuyres surdétendues. Onera RT 41/4361 DAFE/N (1998)Google Scholar
  2. 2.
    C.R. Foster, F.B. Cowles: Experimental study of gas flow separation in over-expanded exhaust nozzles for rocket motors. Jet Propulsion Laboratory, Progress report 4-103 (1949)Google Scholar
  3. 3.
    C.A. Hunter: ‘Experimental, Theoretical, and Computational Investigation of Separated Nozzle Flows’. In: 34thAIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, Cleveland, OH, July 13–15, 1998Google Scholar
  4. 4.
    P. Reijasse, M. Frey, O. J. Haidn: ‘Flow Physics and Side Loads in Highly Over-expanded Rocket Nozzles’. In: 2 ndONERA-DLR Aerospace Symposium at Berlin, Germany, June 15–16, 2000Google Scholar
  5. 5.
    V. Dutoit, D. Vuillamy: Étude de réchauffement de la tuyére d’échappement de la ligne oxygéne. SEP-23 165/96 (1996)Google Scholar
  6. 6.
    R.J. Kee, F.M. Rupley, J.A. Miller: The Chemkin Thermodynamic Data Base. Sandia Report SAND-8215B (1992)Google Scholar
  7. 7.
    K.K. Kuo: Principles of Combustion. (Wiley-Interscience 1986)Google Scholar
  8. 8.
    Y. Burtschell, M. Cardoso, D.E. Zeitoun: Numerical analysis of reducing driver gas contamination in impulse shock tunnels. AIAA Journal 39(12), 2357 (2001)ADSCrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • L. Meister
    • 1
  • Y. Burtschell
    • 1
  • D. E. Zeitoun
    • 1
  1. 1.Ecole Polytechnique Universitaire de Marseille, Département Mécanique EnergétiqueUniversité de ProvenceMarseille CedexFrance

Personalised recommendations