Shock Waves pp 1049-1054 | Cite as

Two-dimensional effects of the head on interaction between planar shock wave with low density foam

  • G. Malamud
  • D. Levi-Hevroni
  • A. Levy
Conference paper


Two-dimensional physical and numerical models for predicting the characteristics of the flow field during an unsteady interaction between a planar shock wave moving through air and a deformable saturated porous material were developed using the Representative Elementary Volume (REV) approach. The numerical model is based on a two-phase finite Arbitrary Lagrangian Eulerian (A.L.E) difference scheme for solving the two dimensional version of the governing equations. The numerical predictions are compared qualitatively and quantitatively to experimental results and good agreements are obtained both in one and two dimensional cases.


Shock Wave Representative Elementary Volume Shock Tube Polyurethane Foam Planar Shock Wave 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. Bear, Y. Bachmat: Introduction to Modeling of Transport Phenomena in Porous Media. (Kluwer Academic Publishers, Dordrecht, Germany 1990)CrossRefGoogle Scholar
  2. 2.
    J. Bear, S. Sorek, G. Ben-Dor, G. Mazor: Fluid Dynamics Research 9, 155 (1992)ADSCrossRefGoogle Scholar
  3. 3.
    L.J. Gibson, M.F. Ashby: Cellular Solid — Structure and Properties. (Program Press, Headington Hill Hall, Oxford, England 1988)zbMATHGoogle Scholar
  4. 4.
    K. Kitagawa, T. Jyonouchi, M. Yashura: Shock Waves 11, 133 (2001)ADSCrossRefGoogle Scholar
  5. 5.
    A. Levy: Wave Propagation in a Saturated Porous Media. Ph.D. Thesis, Ben-Gurion University of the Negev, Beer-Sheva, Israel (1995)Google Scholar
  6. 6.
    A. Levy, S. Sorek, G. Ben-Dor, J. Bear: Transport in Porous Media 21, 241 (1995)CrossRefGoogle Scholar
  7. 7.
    A. Levy, G. Ben-Dor, S. Sorek: Shock Waves 8, 127 (1998)ADSCrossRefGoogle Scholar
  8. 8.
    D. Levi-Hevroni: Non-linear Waves Propagation in Multiphase Porous Media. Ph.D. Thesis, Ben-Gurion University of the Negev, Beer-Sheva, Israel (2000)Google Scholar
  9. 9.
    G. Malamud, D. Levi-Hevroni, A. Levy: AIAA journal (2003)Google Scholar
  10. 10.
    B.W. Skews, M.D. Atkins, M.W. Seitz: Journal of Fluid Mechanics 253, 245 (1993)ADSCrossRefGoogle Scholar
  11. 11.
    S. Sorek, J. Bear, G. Ben-Dor, G. Mazor: transport in porous media 9, 3 (1992)CrossRefGoogle Scholar
  12. 12.
    M.L. Wilkins: ‘Calculations of Elastic Plastic Flow’. In: Methods in Computational Physics III, (Academic Press, 1964), pp. 211–247Google Scholar
  13. 13.
    E. Zaretsky, G. Ben-Dor: ASME J. of Eng. Materials and Technology 117, 278 (1996)CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • G. Malamud
    • 1
  • D. Levi-Hevroni
    • 1
  • A. Levy
    • 1
  1. 1.Pearlstone Center for Aeronautical Engineering Studies, Department of Mechanical EngineeringBen-Gurion University of the NegevBeer ShevaIsrael

Personalised recommendations