Advertisement

Shock Waves pp 1033-1038 | Cite as

Shock tube problem with phase transition: numerical analysis and experiments

  • X. Luo
  • D. G. Labetski
  • V. Holten
  • M. E. H. van Dongen
Conference paper

Abstract

Numerical and experimental studies of phase transition phenomena in a shock tube are presented. The simulations are based on the 2D Euler equations, combined with the extended Hill’s moment method, in which both condensation and evaporation are implemented. Experiments in a pulse-expansion wave tube with water-helium as a test-gas are used to validate the numerical model. Comparing pressure histories and transient properties of the cloud, it is shown that this experimental facilities can be served as an excellent experimental benchmark for numerical methods dealing with phase transition.

Keywords

Droplet Size Nucleation Rate Shock Tube Droplet Radius Saturation Ratio 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M.E.H. van Dongen, X. Luo, G. Lamanna, D.J. van Kathoven: ‘On Condensation Induced ShockWaves’. In: Proc. 10th Chin. Symp. Shock waves, Chinese Academy of Science, Yellow Mountain, October 2002 pp. 1–11Google Scholar
  2. 2.
    K.N.H. Looijmans, M.E.H. van Dongen: A pulse-expansion wave tube for nucleation studies at high pressures. Exp. Fluids 23, 54 (1997)CrossRefGoogle Scholar
  3. 3.
    B.E. Wijslouvil, C.H. Heath, J.L. Chang, J. Wilemski: Binary condensation in a supersonic nozzle. J. Chem. Phys. 113, 7317 (2000)ADSCrossRefGoogle Scholar
  4. 4.
    F. Peters, B. Paikert: Measurement and interpretation of growth and evaporation of monodispersed droplets in a shock tube. Int. J. heat Mass Transfer 37(2), 293 (1994)ADSCrossRefGoogle Scholar
  5. 5.
    G. Lamanna: On Nucleation and Droplet Growth in Condensing Nozzle Flows, Ph.D. Thesis, Eindhoven University of Technology (2000)Google Scholar
  6. 6.
    E.F. Allard, J.L. Kassner: New cloud-chamber method for determination of homogeneous nucleation rates, J. Chem. Phys. 42, 1401 (1965)ADSCrossRefGoogle Scholar
  7. 7.
    P.E. Wagner, R. Strey: Homogeneous nucleation rates of water vapor measured in a two piston expansion chamber, J. Chem. Phys. 85, 2694 (1981)CrossRefGoogle Scholar
  8. 8.
    C.C.M. Luijten, P. Peeters, M.E.H. van Dongen: Nucleation at high pressure II: wave tube data and analysis, J. Chem. Phys. 222, 8535 (1999)ADSCrossRefGoogle Scholar
  9. 9.
    P. Peeters, J. Hruby, M.E.H. van Dongen: High pressure nucleation experiment in binary and ternary mixtures, J. Phys. Chem. B. 105, 11763 (2001)CrossRefGoogle Scholar
  10. 10.
    P. Peeters, J.J.H. Gielis, M.E.H. van Dongen: The nucleation behavior of supersaturated water in helium, J. Chem. Phys. 117, 5647 (2002)ADSCrossRefGoogle Scholar
  11. 11.
    X. Luo, M.E.H. van Dongen: On unsteady flows with phase transition, CFD-J. (2003) (accepted)Google Scholar
  12. 12.
    P.G. Hill: Condensation of water vapor during supersonic expansion in nozzles, J. Fluid Mech., 25, 593 (1966)ADSCrossRefGoogle Scholar
  13. 13.
    M. Sun, K. Takayama: Conservative smoothing on an adaptive quadrilateral grid, J. of Comp. Phys., 150, 143 (1999)ADSCrossRefGoogle Scholar
  14. 14.
    M. Sun: Numerical and Experimental Studies of Shock Wave Interaction with Bodies, Ph.D. Thesis, Tohoku University, Sendai, Japan (1998)Google Scholar
  15. 15.
    B. Prast: Condensation in supersonic expansion flows; theory and numerical evaluation, SAI, Eindhoven University of Technology, Eindhoven (1997)Google Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • X. Luo
    • 1
  • D. G. Labetski
    • 1
  • V. Holten
    • 1
  • M. E. H. van Dongen
    • 1
  1. 1.Department of Applied PhysicsEindhoven University of TechnologyEindhovenThe Netherlands

Personalised recommendations