Shock Waves pp 843-848 | Cite as

Eigenvalue detonation of nitromethane and its failure

  • Y. M. Li
  • D. L. Frost
Conference paper


We present a model and implement a procedure that obtains the detonation velocity-diameter effect of liquid explosives by solving the quasi-one-dimensional conservation equations with source terms for mass, momentum and energy transfer. This analysis has been applied to the case of liquid nitromethane as a test bed. The results predict a detonation velocity deficit of less than 2% at the failure diameter, which is consistent with previous experimental results. With an Arrhenius reaction rate law, failure diameters of 15–18 mm are obtained for activation energies in the range of 30–40 kcal/mole. The detailed structure of the detonation zone is also obtained in the determination of the eigenvalue detonation solution.


Detonation Velocity Sonic Point Detonation Parameter Charge Diameter Liquid Explosive 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. Engelke, J. B. Bdzil: Phys. Fluids 5, 26 (1983)Google Scholar
  2. 2.
    A. N. Dremin: Toward Detonation Theory. (Springer-Verlag New York, Inc. 1999)Google Scholar
  3. 3.
    N. C. Biais, Ray Engelke, S. A. Sheffield: J. Chem. Phys. A 11, 101 (1997)Google Scholar
  4. 4.
    W. W. Wood, J.G. Kirkwood: J. Chem. Phys. 11, 22 (1954)Google Scholar
  5. 5.
    F. Zhang, J. H. S. Lee: Friction-induced oscillatory behaviour of one-dimensional detonations, Proc. R. Soc. Lond. A, (1994)Google Scholar
  6. 6.
    D. Scott, J. Yao: Combustion and Flame 113, 224 (1998)CrossRefGoogle Scholar
  7. 7.
    D. J. Dunnett, D. C. Swift, M. Braithwaite: ‘The Comparison of Willamsburg and JWL Equations of State for Nitromethane’. In: 11th Symp. on Detonation, 1998 Google Scholar
  8. 8.
    S.A. Sheffield, L. L. Davis, R. Engelke: “Detonation Properties of Nitromethane, Deuterated Nitromethane and Bromonitromethane’. In: 11th Symp. on Detonation, 1998 Google Scholar
  9. 9.
    J. M. Winey, G. E. Duvall, M. D. Knudson, Y. M. Gupta: J. Chem. Phys. 17, 113 (2000)Google Scholar
  10. 10.
    D. L. Kennedy: ‘Modelling Shock Initiation and Detonation in the Non-ideal Explosive PBXW-115’. In: 10th Symp. on Detonation, 1994 Google Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Y. M. Li
    • 1
  • D. L. Frost
    • 1
  1. 1.Mcgill UniversityMontrealCanada

Personalised recommendations