Advertisement

Shock Waves pp 819-824 | Cite as

Numerical studies of pre-detonator ignition of pulse detonation engine

  • J. P. Wang
  • Y. F. Liu
  • T. W. Li
Conference paper

Abstract.

Two-dimensional numerical simulations of pre-detonator ignition of pulse detonation engine were performed. The pre-detonators are installed at the closed-end of the main detonation tube in two different ways: either in parallel with or perpendicular to the main detonation tube axis. Studies indicate that the perpendicular arrangement is better than the parallel layout because the reflected shock waves play an important role in the introduction of the detonation wave in the pre-detonator into the main tube.

Keywords

Detonation Wave Detonation Front Pulse Detonation Engine Detonation Tube Direct Initiation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Eidelman, W. Grossmann, N.E. Gunners, I. Lottati: Progress in pulsed detonation engine development. AIAA Paper 94-2721 (1997)Google Scholar
  2. 2.
    T.R.A. Bussing, J.B. Hinkey, L. Kaye: Pulse detonation engine preliminary design considerations. Paper AIAA 94-3220 (1994)Google Scholar
  3. 3.
    Z. Jiang: ‘Study on Detonation Propulsion Concept and Mechanism-hot Spot in New Rocket Engine’. In: Proceedings of National Younger Scientists Workshop on Fluid Dynamics, Wuxi, September 2–21, 2001, pp. 14–21 (in Chinese)Google Scholar
  4. 4.
    Y.H. Wu, V. Yang, S.C. Chang: Numerical simulation of detonation within detailed chemical kinetics using the space-time method. AIAA Paper 2000-0317 (2000)Google Scholar
  5. 5.
    H.B. Ebrahimi, CL. Merkle: A numerical simulation of the pulse detonation engine with hydrogen fuels. AIAA Paper 99-2818 (1999)Google Scholar
  6. 6.
    J.R Wang, Y.F. Liu, H.W. Liu: ‘One-dimensional Numerical Simulation of the Pulsed Detonation engines’. In: Proceedings of the 23rd International Symposium on Space Technology and Science, Matsue, May 28–31, 2002, pp. 119–124Google Scholar
  7. 7.
    J.P. Wang, Y.F. Liu: ‘Two-dimensional Numerical Simulations on Ignition of Pulsed Detonation Engine’. In: 4th Asian-Pacific Conference on Aerospace Technology and Science, Chongqing, November 4–8, 2002 (CD Version)Google Scholar
  8. 8.
    E.S. Oran, D.A. Jones, M. Sichel: Proc. R. Soc. Lond. A 436, 267 (1992)ADSCrossRefGoogle Scholar
  9. 9.
    CP. Li, K. Kailasanath: Detonation diffraction in pulse detonation engines. AIAA Paper 2000-3470 (2000)Google Scholar
  10. 10.
    J.C. Liu, J.J. Liou, M. Sichel, C.W. Kauffman, J.A. Nicholls: ‘Diffraction and Transmission of a Detonation into a Bounding Explosive Layer’. In: Proc. 21st Symp. (Int.) on Combustion, 1981, pp. 1659–1668Google Scholar
  11. 11.
    S. Taki, T. Fujiwara: AIAA Journal 16, 73 (1978)ADSCrossRefGoogle Scholar
  12. 12.
    J.P. Wang: Computers & Fluids 27, 639 (1998)CrossRefGoogle Scholar
  13. 13.
    J.P. Wang: Computational Fluid Dynamics Journal 10, 569 (2002)Google Scholar
  14. 14.
    J.P. Wang: ‘Key to Problems in Spectral Methods’. In: Computational Fluid Dynamics Review 1998 ed. by M. Hafez, K. Oshima (World Scientific, 1998) pp. 369–378Google Scholar
  15. 15.
    C.W. Shu, S. Osher: Journal of Computational Physics 83, 32 (1989)ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • J. P. Wang
    • 1
  • Y. F. Liu
    • 2
  • T. W. Li
    • 2
  1. 1.College of Environmental SciencesPeking UniversityBeijingChina
  2. 2.Department of Mechanics and Engineering SciencePeking UniversityBeijingChina

Personalised recommendations