Advertisement

Shock Waves pp 807-812 | Cite as

Jet-initiated hydrogen detonation phenomena

  • S. P. Medvedev
  • S. V. Khomik
  • H. Olivier
  • A. N. Polenov
  • A. M. Bartenev
  • B. E. Gelfand
Conference paper

Abstract

Extensive studies of detonation initiation by a turbulent jet of combustion products over the past three decades are aimed at to clarify the mechanism of transition from deflagration to detonation (DDT). Numerous experiments [1, 2, 3, 4, 5, 6, 7, 8] under different conditions give decisive evidence that detonation by jet mixing can be initiated both in confined and unconfined geometry. The inconsistency in the experimental data of different authors can be due to the different jet formation techniques used. The disadvantage of the flame jet drivers [1,5,8] is given by the continuous outflow of the unburned mixture in front of the flame front. This outflow can lead to a significant turbulization of the mixture downstream of the jet and in this case detonation starts under uncontrolled conditions. This difficulty can be overcome by the use of the bursting membrane technique [2, 3, 4,6,7]. In this case, the jet upstream stagnation conditions immediately in front of the jet orifice are maintained. However, the fragments of the bursting membrane can significantly influence the flow properties of the jet.

Keywords

Shock Wave Detonation Wave Flame Front Perforated Plate Detonation Initiation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. Knystautas, J.H. Lee, I.O. Moen, H.Gg Wagner: ‘Direct Initiation of Spherical Detonation by a Hot Turbulent Gas Jet’. In: Proc. 17th Intern. Symp. on Combustion, The Combustion Institute, Pittsburgh 1979, pp.1235–1245Google Scholar
  2. 2.
    F. Carnasciali, J.H.S. Lee, R. Knystautas, F. Fineschi: Combustion and Flame 84, 319 (1991)CrossRefGoogle Scholar
  3. 3.
    A.V. Bezmelnitsin, S.B. Dorofeev, Y.G. Yankin: ‘Direct Comparison of Detonation Initiation by Turbulent Jet Under Confined and Unconfined Conditions’. In: Conf. Proc. of 16-th ICDERS, August 3–8, 1997, (Cracow, Poland 1997) pp. 222–225Google Scholar
  4. 4.
    M. Berman: Nuclear Science and Engineering 93, 321 (1986)CrossRefGoogle Scholar
  5. 5.
    I.O. Moen, D. Bjerketvedt, A. Jenssen, B.H. Hjertager, J.R. Bakke: Combustion and Flame 75, 297 (1989)CrossRefGoogle Scholar
  6. 6.
    S.B. Dorofeev, A.V. Bezmelnitsin, V.P. Sidorov, J.G. Yankin, I.D. Matsukov: Shock Waves 6, 73 (1996)ADSCrossRefGoogle Scholar
  7. 7.
    M. Inada, J.H. Lee, R. Knystautas: Photographic study of direct initiation of detonation by a turbulent jet. Progress in Astronautics and Aeronautics 153, 253–269 (1993)Google Scholar
  8. 8.
    GO. Thomas, A. Jones: Combustion and Flame 120, 392 (2000)CrossRefGoogle Scholar
  9. 9.
    J. Chao, J.H.S. Lee: ‘Detonation Initiation at a Turbulent Interface’. In: 2002 Spring Technical Meeting, The Combustion Institute Canadian Section, (University of Windsor 2002) pp. 42.1–42.6Google Scholar
  10. 10.
    A. Eder, C. Gerlach, F. Mayinger: ‘Determination of Quantitative Criteria for the Transition from Deflagration to Detonation in H2/H2O/Air-mixtures’. In: Proc. of 22nd Int. Symposium on Shock Waves, ed. by G.J. Ball, R.H. Hillier and GT. Roberts (University of Southampton 2000) Vol. 1, pp. 205–210Google Scholar
  11. 11.
    A.I. Gavrikov, A.A. Efimenko, S.B. Dorofeev: Combustion and Flame 120, 19 (2000)CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • S. P. Medvedev
    • 1
  • S. V. Khomik
    • 1
  • H. Olivier
    • 2
  • A. N. Polenov
    • 1
  • A. M. Bartenev
    • 1
  • B. E. Gelfand
    • 1
  1. 1.Institute of Chemical PhysicsRASMoscowRussia
  2. 2.Shock Wave LaboratoryAachen UniversityAachenGermany

Personalised recommendations