Advertisement

Novel Skeletal Representation for Articulated Creatures

  • Gabriel J. Brostow
  • Irfan Essa
  • Drew Steedly
  • Vivek Kwatra
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3023)

Abstract

Volumetric structures are frequently used as shape descriptors for 3D data. The capture of such data is being facilitated by developments in multi-view video and range scanning, extending to subjects that are alive and moving. In this paper, we examine vision-based modeling and the related representation of moving articulated creatures using spines. We define a spine as a branching axial structure representing the shape and topology of a 3D object’s limbs, and capturing the limbs’ correspondence and motion over time.

Our spine concept builds on skeletal representations often used to describe the internal structure of an articulated object and the significant protrusions. The algorithms for determining both 2D and 3D skeletons generally use an objective function tuned to balance stability against the responsiveness to detail. Our representation of a spine provides for enhancements over a 3D skeleton, afforded by temporal robustness and correspondence. We also introduce a probabilistic framework that is needed to compute the spine from a sequence of surface data.

We present a practical implementation that approximates the spine’s joint probability function to reconstruct spines for synthetic and real subjects that move.

Keywords

Geodesic Distance Medial Axis Polygonal Model Skeleton Graph Generalize Cylinder 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Arun, K.S., Huang, T.S., Blostein, S.D.: Least squares fitting of two 3-d point sets. IEEE Transactions on Pattern Analysis and Machine Intelligence PAMI-9 2, 698–700 (1987)CrossRefGoogle Scholar
  2. 2.
    Attali, D., Montanvert, A.: Computing and simplifying 2d and 3d continuous skeletons. Computer Vision and Image Understanding 67(3), 261–273 (1997)CrossRefGoogle Scholar
  3. 3.
    Betelu, S., Sapiro, G., Tannenbaum, A., Giblin, P.J.: Noise-resistant affine skeletons of planar curves. In: Vernon, D. (ed.) ECCV 2000. LNCS, vol. 1842, pp. I: 742–754. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  4. 4.
    Binford, T.: Generalized cylinder representation. In: Encyclopedia of A. I., pp. 321–323. John Wiley & Sons, Chichester (1987) (first presented in 1971)Google Scholar
  5. 5.
    Blum, H.: Biological shape and visual science (part I). Journal of Theoretical Biology 38, 205–287 (1973)CrossRefGoogle Scholar
  6. 6.
    Bradksi, G., Pisarevsky, V.: Intel’s computer vision library: Applications in calibration, stereo, segmentation, tracking, gesture, face, and object recognition. In: Proceedings of IEEE CVPR 2000, vol. II, pp. II: 796–797 (2000) Demonstration Paper Google Scholar
  7. 7.
    Cao, Y.: Axial Representations of 3D Shapes, PhD thesis, Brown University (2003)Google Scholar
  8. 8.
    Cao, Y., Mumford, D.: Geometric structure estimation of axially symmetric pots from small fragments. In: Proc. IASTED SPPRA (2002)Google Scholar
  9. 9.
    Chu, C., Jenkins, O., Mataric, M.: Markerless kinematic model and motion capture from volume sequences. In: CVPR 2003, pp. II: 475–482 (2003)Google Scholar
  10. 10.
    Cormen, T.H., Leiserson, C.E., Rivest, R.L.: Introduction to Algorithms. MIT Press/McGraw-Hill (1990)Google Scholar
  11. 11.
    Culbertson, W.B., Malzbender, T., Slabaugh, G.: Generalized voxel coloring. In: Triggs, B., Zisserman, A., Szeliski, R. (eds.) ICCV-WS 1999. LNCS, vol. 1883, pp. 100–115. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  12. 12.
    Dey, T.K., Zhao, W.: Approximate medial axis as a voronoi subcomplex. In: Proceedings of the Seventh ACM Symposium on Solid Modeling and Applications, pp. 356–366. ACM Press, New York (2002)CrossRefGoogle Scholar
  13. 13.
    Ferley, E., Cani, M.-P., Attali, D.: Skeletal reconstruction of branching shapes. Computer Graphics Forum 16(5), 283–293 (1997)CrossRefGoogle Scholar
  14. 14.
    Hastie, T., Stuetzle, W.: Principal curves. Journal of the American Statistical Association 84, 502–516 (1989)zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Hilaga, M., Shinagawa, Y., Kohmura, T., Kunii, T.L.: Topology matching for fully automatic similarity estimation of 3d shapes. In: Proceedings of ACM SIGGRAPH 2001, Computer Graphics Proceedings. Annual Conference Series, pp. 203–212 (2001)Google Scholar
  16. 16.
    Hubbard, P.M.: Approximating polyhedra with spheres for time-critical collision detection. ACM Transactions on Graphics 15 3, 179–210 (1996)CrossRefGoogle Scholar
  17. 17.
    Katz, S., Tal, A.: Hierarchical mesh decomposition using fuzzy clustering and cuts. ACM Transactions on Graphics 22 (2003)Google Scholar
  18. 18.
    Kégl, B., Krzyżak, A., Linder, T., Zeger, K.: Learning and design of principal curves. IEEE Transactions on Pattern Analysis and Machine Intelligence 22(3), 281–297 (2000)CrossRefGoogle Scholar
  19. 19.
    Leymarie, F.F., Kimia, B.B.: The shock scaffold for representing 3d shape. In: Arcelli, C., Cordella, L.P., Sanniti di Baja, G. (eds.) IWVF 2001. LNCS, vol. 2059, pp. 216–229. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  20. 20.
    Li, X., Toon, T.W., Huang, Z.: Decomposing polygon meshes for interactive applications. In: Proceedings of the 2001 Symposium on Interactive 3D graphics, pp. 35–42. ACM Press, New York (2001)CrossRefGoogle Scholar
  21. 21.
    Marr, D., Nishihara, H.: Representation and recognition of the spatial organization of three-dimensional shapes. In: Proc. of the Royal Society of London, series B, vol. 200, pp. 269–294 (1978)Google Scholar
  22. 22.
    Nain, D., Haker, S., Kikinis, R., Grimson, W.E.L.: An interactive virtual endoscopy tool. In: Workshop on Interactive Medical Image Visualization and Analysis satellite symposia of MICCAI, IMIVA 2001, Utrecht, The Netherlands (2001)Google Scholar
  23. 23.
    Sebastian, T.B., Klein, P.N., Kimia, B.B.: Recognition of shapes by editing shock graphs. In: ICCV, pp. I: 755–762 (2001)Google Scholar
  24. 24.
    Siddiqi, K., Bouix, S., Tannenbaum, A., Zucker, S.W.: Hamiltonjacobi skeletons. IJCV 48(3), 215–231 (2002)zbMATHCrossRefGoogle Scholar
  25. 25.
    Teichmann, M., Teller, S.: Assisted articulation of closed polygonal models. In: Proceeding of Eurographics Workshop on Computer Animation and Simulation 1998 (1998)Google Scholar
  26. 26.
    Vedula, S., Baker, S., Seitz, S., Kanade, T.: Shape and motion carving in 6D. In: Proceedings of Computer Vision and Pattern Recognition (CVPR 2000), pp. 592–598 (2000)Google Scholar
  27. 27.
    Verroust, A., Lazarus, F.: Extracting skeletal curves from 3d scattered data. The Visual Computer 16(1) (2000)Google Scholar
  28. 28.
    Wade, L., Parent, R.E.: Automated generation of control skeletons for use in animation. The Visual Computer 18(2), 97–110 (2002)zbMATHCrossRefGoogle Scholar
  29. 29.
    Zhang, Z.: A flexibe new technique for camera calibration. Tech. Rep. 98-71, Microsoft Research (1998), http://www.research.microsoft.com/~zhang/Calib/

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Gabriel J. Brostow
    • 1
  • Irfan Essa
    • 1
  • Drew Steedly
    • 1
  • Vivek Kwatra
    • 1
  1. 1.Georgia Institute of TechnologyAtlantaUSA

Personalised recommendations