Optimal Importance Sampling for Tracking in Image Sequences: Application to Point Tracking

  • Elise Arnaud
  • Etienne Mémin
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3023)


In this paper, we propose a particle filtering approach for tracking applications in image sequences. The system we propose combines a measurement equation and a dynamic equation which both depend on the image sequence. Taking into account several possible observations, the likelihood is modeled as a linear combination of Gaussian laws. Such a model allows inferring an analytic expression of the optimal importance function used in the diffusion process of the particle filter. It also enables building a relevant approximation of a validation gate. We demonstrate the significance of this model for a point tracking application.


Image Sequence Point Tracking Cluttered Background Importance Function Gaussian System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Anderson, B.D.O., Moore, J.B.: Optimal Filtering, Englewood Cliffs (1979)Google Scholar
  2. 2.
    Arnaud, E., Mémin, E., Cernuschi-Frías, B.: A robust stochastic filter for point tracking in image sequences. In: ACCV (2004)Google Scholar
  3. 3.
    Arnaud, E., Mémin, E., Cernuschi-Frías, B.: Conditional filters for image sequence based tracking - application to point tracker. Proc. IEEE trans. on Im. (2004) (accepted for publication)Google Scholar
  4. 4.
    Arulampalam, M.S., Maskell, S., Gordon, N., Clapp, T.: A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking. TSP 50(2) (2002)Google Scholar
  5. 5.
    Aschwanden, P., Guggenbühl, W.: Experimental results from a comparative study on correlation-type registration algorithms. In: Förstner, W., Ruwiedel, S. (eds.) Robust Computer Vision, pp. 268–289 (1992)Google Scholar
  6. 6.
    Bar-Shalom, Y., Fortmann, T.E.: Tracking and Data Association. Academic Press, London (1988)zbMATHGoogle Scholar
  7. 7.
    Black, M.J., Jepson, A.D.: A probabilistic framework for matching temporal trajectories: Condensation-based recognition of gestures and expressions. In: Burkhardt, H.-J., Neumann, B. (eds.) ECCV 1998. LNCS, vol. 1406, pp. 909–924. Springer, Heidelberg (1998)Google Scholar
  8. 8.
    Breidt, F.J., Carriquiry, A.L.: Highest density gates for target traking. IEEE Trans. on Aerospace and Electronic Systems 36(1), 47–55 (2000)CrossRefGoogle Scholar
  9. 9.
    Doucet, A., Godsill, S., Andrieu, C.: On sequential Monte Carlo sampling methods for Bayesian filtering. Statistics and Computing 10(3), 197–208 (2000)CrossRefGoogle Scholar
  10. 10.
    Gordon, N.J., Salmond, D.J., Smith, A.F.M.: Novel approach to non-linear/non-Gaussian Bayesian state estimation. IEEE Processing-F (Radar and Signal Processing) 140(2) (1993)Google Scholar
  11. 11.
    Isard, M., Blake, A.: Condensation – conditional density propagation for visual tracking. IJCV 29(1), 5–28 (1998)CrossRefGoogle Scholar
  12. 12.
    Kong, A., Liu, J.S., Wong, W.H.: Sequential imputations and Bayesian missing data problems. Journal of the American Statistical Association 89(425), 278–288 (1994)zbMATHCrossRefGoogle Scholar
  13. 13.
    Meyer, F., Bouthemy, P.: Region-based tracking using affine motion models in long image sequences. CVGIP:IU 60(2), 119–140 (1994)CrossRefGoogle Scholar
  14. 14.
    Odobez, J.-M., Bouthemy, P.: Robust multiresolution estimation of parametric motion models. Journ. of Vis. Com. and Im. Repr. 6(4), 348–365 (1995)CrossRefGoogle Scholar
  15. 15.
    Papanikolopoulos, N.P., Khosla, P.K., Kanade, T.: Visual tracking of a moving target by a camera mounted on a robot: a combination of control and vision. IEEE Trans. on Robotics and Automation 9(1), 14–35 (1993)CrossRefGoogle Scholar
  16. 16.
    Pérez, P., Hue, C., Vermaak, J., Gangnet, M.: Color-based probabilistic tracking. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002. LNCS, vol. 2350, pp. 661–675. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  17. 17.
    Shi, J., Tomasi, C.: Good features to track. In: CVPR, pp. 593–600 (1994)Google Scholar
  18. 18.
    Singh, A., Allen, P.: Image-flow computation: An estimation-theoric framework and a unified perspective. CVGIP: IU 56(2), 152–177 (1992)zbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Elise Arnaud
    • 1
  • Etienne Mémin
    • 1
  1. 1.IRISAUniversité de Rennes 1Rennes CedexFrance

Personalised recommendations