An Adaptive Window Approach for Image Smoothing and Structures Preserving
Abstract
A novel adaptive smoothing approach is proposed for image smoothing and discontinuities preservation. The method is based on a locally piecewise constant modeling of the image with an adaptive choice of a window around each pixel. The adaptive smoothing technique associates with each pixel the weighted sum of data points within the window. We describe a statistical method for choosing the optimal window size, in a manner that varies at each pixel, with an adaptive choice of weights for every pair of pixels in the window. We further investigate how the I-divergence could be used to stop the algorithm. It is worth noting the proposed technique is data-driven and fully adaptive. Simulation results show that our algorithm yields promising smoothing results on a variety of real images.
Keywords
Mean Square Error Noise Variance Image Decomposition Image Smoothing Adaptive ChoiceReferences
- 1.Barash, D.: A fundamental relationship between bilateral filtering, adaptive smoothing and the nonlinear diffusion equation. IEEE Trans. Patt. Anal. Mach. Intell. 24(6), 844–847 (2002)CrossRefGoogle Scholar
- 2.Hamza, A.B., Krim, H.: A variational approach to maximum a posteriori estimation for image denoising. In: Figueiredo, M., Zerubia, J., Jain, A.K. (eds.) EMMCVPR 2001. LNCS, vol. 2134, pp. 19–34. Springer, Heidelberg (2001)CrossRefGoogle Scholar
- 3.Blake, A., Zisserman, A.: Visual Reconstruction. MIT Press, Cambridge (1987)Google Scholar
- 4.Black, M.J., Sapiro, G.: Edges as outliers: Anisotropic smoothing using local image statistics. In: Nielsen, M., Johansen, P., Fogh Olsen, O., Weickert, J. (eds.) Scale-Space 1999. LNCS, vol. 1682, pp. 259–270. Springer, Heidelberg (1999)CrossRefGoogle Scholar
- 5.Catte, F., Lions, P.-L., Morel, J.-M., Coll, T.: Image selective smoothing and edgedetection by nonlinear diffusion. SIAM J. Numerical Analysis 29(1), 182–193 (1992)zbMATHCrossRefMathSciNetGoogle Scholar
- 6.Chan, T., Osher, S., Shen, J.: The digital TV filter and nonlinear denoising. IEEE. Trans. Image Process. 10(2), 231–241 (2001)zbMATHCrossRefGoogle Scholar
- 7.Chu, C.K., Glad, K., Godtliebsen, F., Marron, J.S.: Edge-preserving smoothers for image processing. J. Am. Stat. Ass. 93(442), 526–555 (1998)zbMATHCrossRefMathSciNetGoogle Scholar
- 8.Comaniciu, D., Meer, P.: Mean-shift: a robust approach toward feature space analysis. IEEE Trans. Patt. Anal. Mach. Intel. 24(5), 603–619 (2002)CrossRefGoogle Scholar
- 9.Csiszár, I.: Why least squares and maximum entropy? An axiomatic approach to inference for linear inverse problems. Ann. Statist. 19, 2032–2066 (1991)zbMATHCrossRefMathSciNetGoogle Scholar
- 10.Gasser, T., Sroka, L., Jennen Steinmetz, C.: Residual variance and residual pattern in nonlinear regression. Biometrika 73, 625–633 (1986)zbMATHCrossRefMathSciNetGoogle Scholar
- 11.Gilboa, G., Sochen, N., Zeevi, Y.Y.: Texture preserving variational denoising using an adaptive fidelity term. In: Proc. VLSM 2003, Nice, France (2003)Google Scholar
- 12.Godtliebsen, F., Spjotvoll, E., Marron, J.S.: A nonlinear Gaussian filter applied to images with discontinuities. J. Nonparametric Statistics 8, 21–43 (1997)zbMATHCrossRefMathSciNetGoogle Scholar
- 13.Juditsky, A.: Wavelet estimators: adapting to unknown smoothness. Math. Methods of Statistics 1, 1–20 (1997)MathSciNetGoogle Scholar
- 14.Lepski, O.: Asymptotically minimax adaptive estimation 1: uppers bounds. SIAM J. Theory of Prob. and Appl. 36(4), 654–659 (1991)Google Scholar
- 15.Maurizot, M., Bouthemy, P., Delyon, B., Juditski, A., Odobez, J.-M.: Determination of singular points in 2D deformable flow fields. In: IEEE Int. Conf. Image Processing, Washington, DC (1995)Google Scholar
- 16.Meyer, Y.: Oscillating patterns in image processing and nonlinear evolution equations. University Lecture Series, vol. 22. AMS, Providence (2002)Google Scholar
- 17.Mrazek, P.: Selection of optimal stopping time for nonlinear diffusion filtering. Int. J. Comp. Vis. 52(2/3), 189–203 (2003)CrossRefGoogle Scholar
- 18.Mumford, D., Shah, J.: Optimal approximations by piecewise smooth functions and variational problems. Comm. Pure and Appl. Math. 42(5), 577–685 (1989)zbMATHCrossRefMathSciNetGoogle Scholar
- 19.Osher, S., Solé, A., Vese, L.: Image decomposition and restoration using total variation minimization and the H− 1 norm. Multiscale Model. Simul. 1(3), 349–370 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
- 20.Perona, P., Malik, J.: Scale space and edge detection using anisotropic diffusion. IEEE Trans. Patt. Anal. Mach. Intell. 12(7), 629–639 (1990)CrossRefGoogle Scholar
- 21.Rudin, L., Osher, S., Fatemi, E.: Nonlinear Total Variation based noise removal algorithms. Physica D 60, 259–268 (1992)zbMATHCrossRefGoogle Scholar
- 22.Tomasi, C., Manduchi, R.: Bilateral filtering for gray and color images. In: Proc. Int. Conf. Comp. Vis. (ICCV 1998), Bombay, India, pp. 839–846 (1998)Google Scholar
- 23.van de Weijer, J., van den Boomgaard, R.: Local mode filtering. In: Proc. Comp. Vis. Patt. Recogn (CVPR 2001), Kauai, Hawaii, USA, vol. II, pp. 428–433 (2001)Google Scholar