Advertisement

Automatische Inferenz

  • Wolfgang Bibel
Part of the Leitfäden der angewandten Informatik book series (XLAI, volume 2)

Kurzfassung

Inferenzbildung wird als eine zentrale Fähigkeit von Systemen angesehen, die intelligentes Verhalten realisieren. Im allgemeinsten Sinne wird darunter die Fähigkeit verstanden, aus vorhandenem Wissen neues Wissen mittels geeigneter Inferenzregeln zu erschließen.

Inferenzbildung tritt in verschiedensten Formen und Kontexten auf, von der strengen mathematischen Beweisführung bis hin zum ungenauen Schließen auf der Grundlage von vagem Wissen im menschlichen Alltag. Oie Grenzen zwischen verschiedenen solcher Formen sind unklar; begriffliche Verwirrung ist die Folge. Der vorliegende Artikel versucht daher, einen klärenden überblick über das Phänomen des Schließens in seinen verschiedenen Manifestationen unter möglichst einheitlichen Gesichtspunkten zu geben.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literaturverzeichnis

  1. Bibel, W., Automated theorem proving. Vieweg Verlag (1982).Google Scholar
  2. Bibel, W., Deduktionsverfahren. Proceedings der Frühjahrsschule Künstliche Intelligenz 1982 (W. Bibel, ed.), Fachberichte Informatik 59, Springer, Berlin, 99–140 (1982a).Google Scholar
  3. Bibel, W., Matings in matrices. C.ACM 26, 844–852 (1983).CrossRefzbMATHMathSciNetGoogle Scholar
  4. Bibel, W., Inferenzmethoden. Proceedings der Frühjahrsschule Künstliche Intelligenz 1984 (C. Habel, ed.), Fachberichte Informatik, Springer, Berlin, 1–47 (1985).Google Scholar
  5. Bibel, W., Knowledge representation from a deductive point of view. Proceedings of the I IFAC Symposium on Artificial Intelligence, Leningrad, USSR, October 1983 (G.S. Pospelov, ed.), Pergamon Press Ltd. (1984a).Google Scholar
  6. Bibel, W., First-order reasoning about knowledge and belief. Proceedings of the International Conference on Artificial Intelligence and Robotic Control Systems, Smolenice, CSSR, Juni 1984 (I. Plander, ed.), North-Holland, Amsterdam, 9–16 (1984b).Google Scholar
  7. Bibel, W., Jorrand, Ph., Fundamentals in Artificial Intelligence. Advanced Course on Artificial Intelligence, Vignieu, July 1985, Lecture Notes in Computer Science, Springer, Berlin (1986).Google Scholar
  8. Biermann, A.W., Fundamental mechanisms in machine learning and inductive inference. In (Bibel, Jorrand 86).Google Scholar
  9. Biermann, A., Guiho, G., und Kodratoff, Y., Automatic program construction techniques. MacMillan, New York (1984).zbMATHGoogle Scholar
  10. Bowen, K., and Kowalski, R., Amalgamating language and metalanguage in logic programming. In: Logic programming ( K.L. Clark et al., eds.), Academic Press, London (1982).Google Scholar
  11. Brown, J.S., und de Kleer, J., The origin, form, and logic of qualitative physical laws. IJCAI-83 (A. Bundy, ed.), Kaufmann, Los Altos, 1158–1169 (1983).Google Scholar
  12. Bundy, A., The computer modelling of mathematical reasoning. Academic Press (1983).Google Scholar
  13. Clark, K., Negation as failure. In: Logic and data bases (H. Gallaire et al., eds.), Plenum Press, New York, 293–322 (1978).Google Scholar
  14. Duda, R., Gaschnig, J., und Hart, P.E., Model design in the PROSPECTOR consultant system for mineral exploration. In: Expert systems in the micro-electronic age (D. Michie, ed.), Edinburgh Univ. Press, 153–167 (1979).Google Scholar
  15. Hughes, G.E., und Cresswell, M.J., An introduction to modal logic. Methuen, London (1968).zbMATHGoogle Scholar
  16. Kowalski, R., Logic for problem solving. North-Holland, New York (1979).zbMATHGoogle Scholar
  17. Lewis, C.I., A survey of symbolic logic. Univ. of California, Berkeley (1918).Google Scholar
  18. Loveland, D.W., Automated theorem proving. North-Holland (1978).Google Scholar
  19. McCarthy, J., First-order theories of individual concepts and propositions. In: Expert systems in the micro-electronic age (D. Michie, ed.), Edinburgh Univ. Press, 271–287 (1979).Google Scholar
  20. McCarthy, J., Circumscription–a form of non-monotonic reasoning. Artificial Intelligence 13, 27–39 (1980).CrossRefzbMATHMathSciNetGoogle Scholar
  21. Michalski, R.S., Carbonell, J.G., und Mitchell, T.M., Machine learning. Tioga, Palo Alto (1983).CrossRefGoogle Scholar
  22. Moore, R.C., Reasoning about knowledge and action. IJCAI-77, Kaufmann, Los Altos, 223–227 (1977).Google Scholar
  23. Moore, R.C., Semantical considerations on non-monotonic logic. IJCAI-83 (A. Bundy, ed.), Kaufmann, Los Altos, 272–279 (1983).Google Scholar
  24. Nilsson, N.J., Principles of artificial intelligence. Tioga, Palo Alto (1980).zbMATHGoogle Scholar
  25. Perlis, D., Languages with self-reference. Artificial Intelligence 25, 301–322 (1985).CrossRefzbMATHMathSciNetGoogle Scholar
  26. Prade, H., A synthetic view of approximate reasoning techniques. IJCAI-83 (A. Bundy, ed.), Kaufmann, Los Altos, 130–136 (1983).Google Scholar
  27. Quinlan, J.R., Internal consistency in plausible reasoning systems. New Generation Computing 3, 157–180 (1985).CrossRefGoogle Scholar
  28. Reiter, R., On closed world data bases. In: Logic and data bases ( H. Gallaire und J. Minker, eds.), Plenum Press, New York (1978).Google Scholar
  29. Reiter, R., Towards a logical reconstruction of relational database theory. In: On conceptual modelling: perspectives from artificial intelligence, databases and programming languages (M. Brodie et al., eds.), Springer, Berlin, 191–238 (1984).CrossRefGoogle Scholar
  30. Robinson, J.A., A machine oriented logic based on the resolution principle. J.ACM 12, 23–41 (1965).CrossRefzbMATHGoogle Scholar
  31. Weyrauch, R.W., Prolegomena to a theory of mechanized formal reasoning. Artificial Intelligence 13, 133–170 (1980).CrossRefMathSciNetGoogle Scholar
  32. Zadeh, L.A., A theory of approximate reasoning. In: Machine Intelligence 9 (J. E. Hayes et al., eds.), Wiley, New York, 149–194, (1979).Google Scholar

Copyright information

© B. G. Teubner Stuttgart 1986

Authors and Affiliations

  • Wolfgang Bibel

There are no affiliations available

Personalised recommendations