Advertisement

Knowledge Engineering und Expertensysteme

  • Johannes Retti
Chapter
Part of the Leitfäden der angewandten Informatik book series (XLAI, volume 2)

Zusammenfassung

Knowledge Engineering befaßt sich mit Entwicklung und Anwendung wissensbasierter Systeme, das heißt, mit dem Problem, wie Wissen am Computer verfügbar und insbesondere verwendbar gemacht werden kann. Der Computer soll als eine allgemein und einfach zugängliche Wissensquelle, die selbst Schlußfolgerungen ziehen kann, und nicht nur als Datenbank betrachtet werden. Unter Wissen wird gegenwärtig das spezielle domänenspezifische Wissen eines Experten verstanden, der aufgrund seiner Ausbildung und Erfahrung Probleme in kurzer Zeit lösen kann, die einem Laien verschlossen sind.Dieses Wissen umfaßt Fakten, typische Aufgabenstellungen und Problemlösungsheuristiken. Der (die) Experte(n) werden vom wissensbasierten System simuliert, und diese Systeme werden daher als Expertensysteme bezeichnet.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Aikins J.S., Kunz J.C., Shortliffe E.H.: PUFF - An expert system for interpretation of pulmonary-function data, Computers and Biomedical Research, 16(3)199–208; 1983.CrossRefGoogle Scholar
  2. Artificial Intelligence in the Heuristic Programming Project,AAAI, The AI Magazine, 4(3)81–92, 1983.Google Scholar
  3. Balzer R., Erman L., London P., Williams Ch.: HEARSAY-III: A Domain-Independent Framework for Expert System, in Proceedings of the First Annual National Conference on Artificial Intelligence, AAAI, Stanford University, pp. 108–110; 1980.Google Scholar
  4. Barr A., Feigenbaum E.A.(eds.): The Handbook of Artificial Intelligence, Vol. 1, William Kaufmann, Los Altos, Cal.; 1981.zbMATHGoogle Scholar
  5. Barr A., Feigenbaum E.A.(eds.): The Handbook of Artificial Intelligence, Vol.2, William Kaufmann, Los Altos, Cal.; 1982.Google Scholar
  6. Brachman R.J., Amarel S., Engelman C., Engelmore R.S., Feigenbaum E.A., Wilkins D.E.: What are Expert Systems?, in Hayes-Roth F.,et al.(eds.), Building Expert Systems, Addison-Wesley, Reading,Mass.; 1982.Google Scholar
  7. Buchanan B.G., Mitchell T.M.: Model-Directed Learning of Production Rules, in Waterman D.A., Hayes-Roth F.(eds.),Pattern-Directed Inference Systems, Academic Press, New York; 1978.Google Scholar
  8. Davis R., Buchanan B.G.: Meta-Level Knowledge: Overview and Applications, in Proceedings of the 5th International Joint Conference on Artificial Intelligence, MIT, Cambridge, USA; 1977Google Scholar
  9. Davis R.: Knowledge Acquisition in Rule-Based Systems–Knowledge about Representations as a Basis for System Construction and Maintenance, in Waterman D.A., Hayes-Roth F.(eds.),Pattern-Directed Inference Systems, Academic Press, New York; 1978Google Scholar
  10. Davis R.: Consultation, Knowledge Acquisition, and Instruction:A Case Study, in Szolovits P.(ed.), Artificial Intelligence in Medicine, Westview Press, Boulder, Colorado; 1982.Google Scholar
  11. Davis R., Lenat D.B.: Knowledge-Based Systems in Artificial Intelligence, McGraw-Hill, New York; 1982.Google Scholar
  12. Duda R., Gaschnig J., Hart P.: Model Design in the Prospector Consultant System for Mineral Exploration, in Michie D.(ed.),Expert Systems in the Micro Electronic Age, Edinburgh Univ.Press, Edinburgh; 1979.Google Scholar
  13. Erman L., London P., Fickas St.: The Design and an Example Use of Hearsay-III, in Proceedings of the 7th International Joint Conference on Artificial Intelligence, Univ.British Columbia,Vancouver, Canada; 1981.Google Scholar
  14. Feigenbaum E.A.: The Art of Artificial Intelligence: Themes and Case Studies of Knowledge Engineering, in Michie D.(ed.), Expert Systems in the Micro Electronic Age, Edinburgh Univ.Press,Edinburgh; 1982.Google Scholar
  15. Feigenbaum E.A., Buchanan B.G., Lederberg J.: On Generality and Problem Solving: a Case Study Using the DENDRAL Program, in Meltzer B., Michie D.(eds.), Machine Intelligence 6, Edinburgh University Press, pp. 165–190; 1981.Google Scholar
  16. Forgy C., McDermott J.: OPS, A Domain-Independent Production System Language, in Proceedings of the 5th International Joint Conference on Artificial Intelligence, MIT, Cambridge, USA; 1977Google Scholar
  17. Freiherr G.: The Seeds of Artificial Intelligence, SUMEX-AIM,National Institutes of Health, Bethseda, Maryland, Report No. 80–2071; 1980.Google Scholar
  18. Gilmore J.F., Howard Ch., Pulaski K.: A Comprehensive Evaluation of Expert System Tools, SPIE Vol. 657, Application of Artificial Intelligence I V; 1986.Google Scholar
  19. Hayes-Roth F., Waterman D., Lenat D.(eds.): Building Expert Systems, Addison-Wesley, Reading, Mass.; 1982.Google Scholar
  20. Horn W.: Expertensysteme: Funktionen und Systeme–Ein Oberblick, Bericht 83–01, Inst.f.Med.Kybernetik, Univ.Wien; 1983.Google Scholar
  21. Lesser V.R., Erman L.D.: A Retrospective View of the Hearsay-IIArchitecture, in Proceedings of the 5th International Joint Conference on Artificial Intelligence, MIT, Cambridge, USA,pp. 790–800; 1977.Google Scholar
  22. McDermott J.: R1: A Rule-Based Configurer of Computer Systems,Artificial Intelligence, 19(1)39–88; 1982.Google Scholar
  23. Van Melle W.: A Domain-Independent Production-Rule System forConsultation Programs, in Proceedings of the 6th International Joint Conference on Artificial Intelligence, Tokyo, Japan,pp. 923–925; 1979.Google Scholar
  24. Miller R.A., Pople H.E., Myers J.D.: INTERNIST-I, an Experimental Computer-Based Diagnostic Consultant for General InternalGoogle Scholar
  25. Medicine, N.Eng.J.Med., 307(8)468–476; 1982.Google Scholar
  26. Moses J.: A MACSYMA Primer, Mathlab Memo No. 2, Computer Science Laboratory, MIT, 1975.Google Scholar
  27. Nii H.P., Feigenbaum E.A.: Rule-Based Understanding of Signals,in Waterman D.A., Hayes-Roth F.(eds.), Pattern-Directed Inference Systems, Academic Press, New York; 1978.Google Scholar
  28. Osborn J., Fagan L., Fallat R., McClung D., Mitchell R.: Managing Data from Respiratory Measurement, Med. Instrumentation, 13, 6; 1979.Google Scholar
  29. Pople H.E.: Heuristic Methods for Imposing Structure in Ill-Structured Problems: The Structuring of MedicalGoogle Scholar
  30. Diagnostics, in Szolovits P.(ed.), Artificial Intelligence in Medicine, Westview Press, Boulder, Colorado; 1982.Google Scholar
  31. Raulefs P.: Methoden der Künstlichen Intelligenz: Übersicht und Anwendungen in Expertensystemen, in Nehmer,J. (ed.) u.a.: GI-12.Jahrestagung, Springer, 1982, Seite 170–187; 1982.Google Scholar
  32. Retti J.: Frameorientierte Wissensrepräsentation für Modellbildung und Simulation, Bericht der Österreichischen Studiengesellschaft für Kybernetik, Nr. 32; 1984.Google Scholar
  33. Retti J.: Artificial Intelligence Entwicklungsumgebungen, in Trost H. und Retti J., Österreichische AI-Tagung 1985, Informatik-Fachbericht No. 106, Springer-Verlag; 1985.Google Scholar
  34. Shortliffe E.H., Davis R., Axline S.G., Buchanan B.G., Cordell Green C., Cohen S.N.: Computer-Based Consultations in Clinical Therapeutics: Explanantion and Rule Acquisition Capabilities of the MYCIN System, Comp. Biomed. Res., 8, 303–320; 1975.Google Scholar
  35. Shortliffe E.H.: Computer-Based Medical Consultations: MYCIN, Elsevier, New York; 1976.Google Scholar
  36. Stefik M.: Inferring DNA-Structures from Segmentation Data,Artif. Intell., 11, 85–114; 1978.Google Scholar
  37. Stefik M.: Planning with Constraints (MOLGEN: Part 1, Part 2),Artificial Intelligence, 16(2)111–139 und 141–169; 1981.Google Scholar
  38. Vesonder G.T. et al.: ACE, An Expert System for Telephone Cable Maintenance, Proceedings of the Eight International Joint Conference on Artificial Intelligence 1983, William Kaufmann, 1983.Google Scholar
  39. Waterman D.A., Hayes-Roth F.(eds.): Pattern-Directed Inference Systems, Academic Press, New York; 1978.Google Scholar
  40. Waterman D.A., Hayes-Roth F.: An Investigation of Tools forBuilding Expert Systems, in Hayes-Roth F., et al.(eds.), Building Expert Systems, Addison-Wesley, Reading, Mass.; 1982.Google Scholar
  41. Waterman D.A.: A Guide to Expert Systems, Addison-Wesley Publishing Company, Reading, Mass.; 1986.Google Scholar
  42. Weiss S.M., Kulikowski C.A., Safir A.: A Model-Based Consultation System for the Long-Term Management of Glaucoma, in Proceedings of the 5th International Joint Conference on Artificial Intelligence, MIT, Cambridge, USA; 1977.Google Scholar
  43. Weiss S.M., Kulikowski C.A., Amarel S.: A Model-Based Method forComputer-Aided Medical Decision-Making, Artificial Intelligence, 11, 145–172; 1978.CrossRefGoogle Scholar
  44. Weiss S.M., Kulikowski C.A.: EXPERT: A System for Developing Consultation Models, in Proceedings of the 6th International Joint Conference on Artificial Intelligence, Tokyo, Japan; 1979.Google Scholar

Copyright information

© B. G. Teubner Stuttgart 1986

Authors and Affiliations

  • Johannes Retti

There are no affiliations available

Personalised recommendations