Advertisement

Incomplete Line LU as smoother and as preconditioner

  • P. M. de Zeeuw
Part of the Notes on Numerical Fluid Mechanics (NNFM) book series (NNFM, volume 29)

Abstract

Results are reported for Incomplete line LU (ILLU) in two different roles. One role is the role of smoother in a multigrid method for the solution of linear systems resulting from the 9-point discretization of a general linear second-order elliptic PDE in two dimensions. Together with features like matrix-dependent gridtransferoperators we obtain a blackbox multigrid solver (MGD9V). Another role for ILLU is as preconditioner in a stabilised bi-cg method (Bi-CGSTAB), as recently developed by Van der Vorst. In this role the preconditioner can easily be generalized for a discretized system of PDEs. A comparison is made between the two different roles.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    R.E.Alcouffe,A.Brandt, J.E.DendyJr. and J.W.PainterThe multi-grid method for the diffusion equation with strongly discontinuous coefficientsSIAM J. Sci. Statist. Comput. 2(4),430–454,1981.CrossRefzbMATHMathSciNetGoogle Scholar
  2. [2]
    O.Axelsson,A General Incomplete Block-Matrix Factorization MethodLinear Algebra and its Applications 74,179–190, 1986.CrossRefzbMATHMathSciNetGoogle Scholar
  3. [3]
    O. Axelsson,A survey of preconditioned iterative methods for linear systems of algebraic equationsBIT 25,166–187, 1985.zbMATHMathSciNetGoogle Scholar
  4. [4]
    P. Concus, G.H. Golub and G. Meurant, Block preconditioning for the conjugate gradient method ,SIAM J. Sci. Statist. Comput., 6 (1), pp. 220–252, 1985.CrossRefzbMATHMathSciNetGoogle Scholar
  5. [5]
    W. HackbuschMulti-Grid Methods and Applications Springer Ser. Comput. Math. 4, Berlin, 1985.CrossRefGoogle Scholar
  6. [6]
    P.W. Hemker and P.M. de Zeeuw, Some implementations of multigrid linear system solvers in: D.J. Paddon and H. Holstein (Eds.) Multigrid methods for integral and differential equations ,Inst. Math. Appl. Conf. Ser. New Ser. (Oxford Univ. Press, New York), pp. 85–116, 1985.Google Scholar
  7. [7]
    R. Kettler, Analysis and comparison of relaxation schemes in robust multigrid and precon ditioned conjugate gradient methods ,in: W. Hackbusch and U. Trottenberg (Eds.), Lecture Notes in Math. 960 (Springer, Berlin), pp. 502–534, 1981.Google Scholar
  8. [8]
    R. Kettler and J.A. Meijerink, A multigrid method and a combined multigrid-conjugate gradient method for elliptic problems with strongly discontinuous coefficients in general domainsShell Publ. 604, KSEPL, Rijswijk, The Netherlands1981.Google Scholar
  9. [9]
    P. Sonneveld, P. Wesseling and P.M. de Zeeuw, Multigrid and conjugate gradient methods as convergence acceleration techniques ,in: D.J. Paddon and H. Holstein (Eds.) Multigrid methods for integral and differential equations ,Inst. Math. Appl. Conf. Ser. New Ser. (Oxford Univ. Press, New York), pp. 117–167, 1985.Google Scholar
  10. [10]
    R.R. Underwood, An approximate factorization procedure based on the block Cholesky de composition and its use with the conjugate gradient method ,Report NEDO-11386, General Electric Co., Nuclear Energy Div., San Jose, California, 1976.Google Scholar
  11. [11]
    H.A. Van der Vorst, Bi-CGSTAB: A fast and smoothly converging variant of Bi-CG for the solution of nonsymmetric linear systems ,SIAM J. Sci. Statist. Comput. 13(2), 1992.Google Scholar
  12. [12]
    P. Wesseling, A robust and efficient multigrid method ,in: W. Hackbusch and U. Trottenberg (Eds.), Lecture Notes in Math. 960 (Springer, Berlin), pp. 614–630, 1981.Google Scholar
  13. [13]
    P. Wesseling, An Introduction to Multigrid Methods ,John Wiley & Sons Ltd, Chichester, England, 1991.Google Scholar
  14. [14]
    P. Wesseling, P. Sonneveld, Numerical experiments with a multiple grid and a preconditioned Lanczos type method ,in: R. Rautmann (ed.), Approximation methods for Navier-Stokes problems ,Proceedings, Paderborn, Germany 1979, Lecture Notes in Mathematics, Springer, Berlin-etc, 1980.Google Scholar
  15. [15]
    P.M. de Zeeuw, Incomplete line LU for discretized coupled PDEs as preconditioner in Bi-CGSTAB ,Report, Centre for Mathematics and Computer Science, Amsterdam, to appear.Google Scholar
  16. [16]
    P.M. de Zeeuw, Matrix-dependent prolongations and restrictions in a blackbox multigrid solver ,Journal of Computational and Applied Mathematics, 33 1–27, 1990.CrossRefzbMATHMathSciNetGoogle Scholar
  17. [17]
    P.M. de Zeeuw and E.J. van Asselt, The convergence rate of multi-level algorithms applied to the convection-diffusion equation ,SIAM J. Sci. Statist. Comput. 6(2), pp. 492&503, 1985.CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Friedr. Vieweg & Sohn Verlagsgesellschaft mbH, Braunschweig/Wiesbaden 1993

Authors and Affiliations

  • P. M. de Zeeuw
    • 1
  1. 1.Centre for Mathematics and Computer ScienceAmsterdamThe Netherlands

Personalised recommendations