The Role of Incomplete LU-Factorization in Multigrid Methods

  • P. Wesseling
Part of the Notes on Numerical Fluid Mechanics (NNFM) book series (NNFM, volume 29)


Since their introduction as preconditioners for conjugate gradient methods (ICCG method, [37]) and the widely appreciated demonstration of the efficiency of these preconditioners in [27], incomplete LU (ILU) factorizations have found widespread use in the context of conjugate gradient and related methods. Not long after its introduction, ILU was also applied as smoother in a multigrid method and comparison was made with a conjugate gradient method, preconditioned with the same ILU factorization, for a Navier-Stokes application ([55]). More extensive comparisons of conjugate gradients and multigrid as linear systems solvers are reported in [45] and [12]. Viewed as linear systems solvers, conjugate gradients and multigrid can be regarded as two alternate ways to accelerate convergence of basic iterative methods. Generally speaking, for medium-sized linear problems conjugate gradients and multigrid are about equally effective, but for sufficiently large problems multigrid is faster, because of its linear computational complexity. Unlike multigrid, conjugate gradient methods are limited to linear problems. On the other hand, conjugate gradient methods are much easier to program, especially when the computational grid is unstructured.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. R.E.Alcouffe,A.Brandt,J.E.Dendy Jr.,and J.W.Painter.The multigrid method for diffusion equations with strongly discontinuous coefficients.SIAM J.Sci.Stat.Comp.2,Google Scholar
  2. [2]
    O.Axelsson,S.Brinkkemper,and V.P.Ilin.On some versions of incomplete block matrix factorization iterative methods.Lin.Algebra Appl.59,3–15,1984.CrossRefMathSciNetGoogle Scholar
  3. [3]
    O.Axelsson and B.Polman.On approximate factorization methods for block matrices suitable for vector and parallel processors.Lin.Alg.Appl.77,3–26,1986.CrossRefzbMATHMathSciNetGoogle Scholar
  4. [4]
    N.S.Bachvalov.On the convergence of a relaxation method with natural constraints on the elliptic operator.USSR Comp.Math,and Math.Phys 6,101–135,1966.CrossRefGoogle Scholar
  5. [5]
    A.Behie and P.A.Forsyth,Jr.Comparison of fast iterative methods for symmetric systems.IMA J.Numer.Anal.,3:41–63,1983.CrossRefzbMATHMathSciNetGoogle Scholar
  6. [6]
    A.Behie and P.A.Forsyth,Jr.Multi-grid solution of the pressure equation in reservoir simulation.In Proc.Sixth Annual Meeting of Reservoir Simulation,Society of Petroleum engineers,New Orleans,1982.Google Scholar
  7. [7]
    A.Brandt.Multi-level adaptive solutions to boundary value problems.Math.Comp.,31:333–390,1977.CrossRefzbMATHMathSciNetGoogle Scholar
  8. [8]
    A.Brandt.Multi-level adaptive technique (MLAT) for fast numerical solution to boundary value problems.In H.Cabannes and R.Temam,editors,Proc.Third Int.Conf.on Numerical Methods in Fluid Mechanics,Vol.1,pages 82–89,Springer-Verlag,Berlin,1973.Lecture Notes in Physics 18.Google Scholar
  9. [9]
    A.Brandt.The Weizmann Institute research in multilevel computation:1988 report.In J.Mandel et al.(1989),pages 13–53.Google Scholar
  10. [10]
    P.Concus,G.H.Golub,and G.Meurant.Block preconditioning for the conjugate gradient method.SIAM J.Sci.Stat.Comp.6,220–252,1985.zbMATHMathSciNetGoogle Scholar
  11. [11] Zeeuw.Matrix-dependent prolongations and restrictions in a blackbox multigrid solver.J.of Comp.and Appl.Math.,3:1–27,1990.CrossRefGoogle Scholar
  12. [12]
    J.E.Dendy,Jr.and J.M.Hyman.Multi-grid and ICCG for problems with interfaces.In M.H.Schultz,editor,Elliptic problem solvers,pages 247–253,Academic Press,New York,1981.Google Scholar
  13. [13]
    B.Enquist and T.Smedsaas,editors.PDE software:Modules interfaces and systems,North-Holland,Amsterdam,1984.Procs.IFIP WG 2.5 Working Conference.Google Scholar
  14. [14]
    R.P.Fedorenko.The speed of convergence of one iterative process.USSR comp.Math,and Math.Phys.,4 no.3:227–235,1964.CrossRefGoogle Scholar
  15. [15]
    P.O.Frederickson.Fast approximate inversion of large elliptic systems.Report 7–75,Lake-head University,Thunderbay,Canada,1975.Google Scholar
  16. [16]
    G.H.Golub and C.F.Van Loan.Matrix computations.Johns Hopkins University Press,Baltimore,1989.zbMATHGoogle Scholar
  17. [17]
    W.Hackbusch.Ein iteratives Verfahren zur schnellen Auflosung elliptischer Randwertprob-leme.Report 76–12,Universität Köln,1976.Google Scholar
  18. [18]
    W.Hackbusch.Iterative Lösung grosser schwachbesetzter Gleichungssysteme.Teubner,Stuttgard,1991.CrossRefzbMATHGoogle Scholar
  19. [19]
    W.Hackbusch.Multi-grid methods and applications.Springer-Verlag,Berlin,1985.CrossRefzbMATHGoogle Scholar
  20. [20]
    W.Hackbusch,editor.Robust Multi-Grid Methods,Vieweg,Braunschweig,1989.Proc.4th GAMM-Seminar,Kiel,1988.Notes on Numerical Fluid Mechanics 23.Google Scholar
  21. [21]
    W.Hackbusch and U.Trottenberg,editors.Multigrid methods,Springer-Verlag,Berlin,1982.Lecture Notes in Mathematics (1960).Google Scholar
  22. [22]
    L.A.Hageman and D.M.Young.Applied iterative methods.Academic Press,New York,1981.zbMATHGoogle Scholar
  23. [23]
    P.W.Hemker.The incomplete LU-decomposition as a relaxation method in multi-grid algorithms.In J.H.Miller,editor,Boundary and Interior Layers -Computational and Asymptotic Methods,pages 306–311,Boole Press,Dublin,1980.Google Scholar
  24. [24]
    P.W.Hemker,R.Kettler,P.Wesseling,and P.M.De Zeeuw.Multigrid methods:development of fast solvers.Appl.Math.Comp.,13:311–326,1983.CrossRefzbMATHGoogle Scholar
  25. [25]
    P.W.Hemker and Zeeuw.Some implementations of multigrid linear systems solvers.In Paddon and Holstein (1985),pages 85–116.Google Scholar
  26. [26]
    P.W.Hemker,P.Wesseling,and Zeeuw.A portable vector-code for autonomous multigrid modules.In Enquist and Smedsaas (1984),pages 29–40.Google Scholar
  27. [27]
    D.S.Kershaw.The incomplete Choleski-conjugate gradient method for the iterative solution of systems of linear equations.J.Comp.Phys.,26:43–65,1978.CrossRefzbMATHMathSciNetGoogle Scholar
  28. [28]
    R.Kettler.Analysis and comparison of relaxation schemes in robust multigrid and conjugate gradient methods.In Hackbusch and Trottenberg (1982),pages 502–534.Google Scholar
  29. [29]
    R.Kettler and J.A.Meijerink.A Multigrid Method and a Combined Multigrid-Conjugate Gradient Method for Elliptic Problems with Strongly Discontinuous Coefficients in General Domains.Technical Report Shell Publ.604,KSEPL,Rijswijk,The Netherlands,1981.Google Scholar
  30. [30]
    R.Kettler and P.Wesseling.Aspects of multigrid methods for problems in three dimensions.Appl.Math.Comp.,19:159–168,1986.CrossRefzbMATHMathSciNetGoogle Scholar
  31. [31]
    M.Khalil.Analysis of Linear Multigrid Methods for Elliptic Differential Equations with Discontinuous and Anisotropic Coefficients.PhD thesis,Delft University of Technology,Delft,The Netherlands,1989.Google Scholar
  32. [32]
    M.Khalil.Local mode smoothing analysis of various incomplete factorization iterative methods.In Hackbusch (1989),pages 155–164.Google Scholar
  33. [33]
    M.Khalil and P.Wesseling.Vertex-centered and cell-centered multigrid for interface problems.J.Comp.Phys.,98:1–10,1992.CrossRefzbMATHGoogle Scholar
  34. [34]
    J.Mandel,S.F.McCormick,J.E.Dendy,Jr.,C.Farhat,G.Lonsdale,S.V.Parter,J.W.Ruge,and K.Stuben,editors.Proceedings of the Fourth Copper Mountain Conference on Multigrid Methods,SIAM,Philadelphia,1989.Google Scholar
  35. [35]
    S.F.McCormick,editor.Multigrid methods,Marcel Dekker Inc.,New.York,1988.Lecture Notes in Pure and Applied Mathematics 110.zbMATHGoogle Scholar
  36. [36]
    J.A.Meijerink and H.A.Van der Vorst.Guidelines for the usage of incomplete decompositions in solving sets of linear equations as they occur in practical problems.J.Comput.Phys.,44:134–155,1981.CrossRefzbMATHMathSciNetGoogle Scholar
  37. J.A.Meijerink and H.A.Van der Vorst.An iterative solution method for linear systems ofGoogle Scholar
  38. [38]
    K.W.Morton and M.J.Baines,editors.Numerical Methods for Fluid Dynamics II,Clarendon Press,Oxford,1986.zbMATHGoogle Scholar
  39. [39]
    K.-D.Oertel and K.Stüben.Multigrid with ILU-smoothing:systematic tests and improvements.In Hackbusch(1989),pages 188–199.Google Scholar
  40. [40]
    D.J.Paddon and H.Holstein,editors.Multigrid Methods for Integral and Differential Equations,Clarendon Press,Oxford,1985.zbMATHGoogle Scholar
  41. [41]
    B.Polman.Incomplete blockwise factorizations of (block) H-matrices.Lin.Alg.Appl.,90:119–132,1987.CrossRefzbMATHMathSciNetGoogle Scholar
  42. [42]
    Y.Saad and M.H.Schultz.GMRES:a generalized minimal residual algorithm for solving non-symmetric linear systems.SIAM J.Sci.Stat.Comp.,7:856–869,1986.zbMATHMathSciNetGoogle Scholar
  43. [43]
    P.Sonneveld.CGS,a fast Lanczos-type solver for nonsymmetric linear systems.SIAM J.Sci.Stat.Comput.,10:36–52,1989.CrossRefzbMATHGoogle Scholar
  44. [44]
    P.Sonneveld,P.Wesseling,and Zeeuw.Multigrid and conjugate gradient acceleration of basic iterative methods.In Morton and Baines (1986),pages 347–368,1986.Google Scholar
  45. [45]
    P.Sonneveld,P.Wesseling,and Zeeuw.Multigrid and conjugate gradient methods as convergence acceleration techniques.In Paddon and Holstein (1985),pages 117–168,1985.Google Scholar
  46. [46]
    R.Teigland and G.E.Fladmark.Cell-centered multigrid methods in porous media flow.In W.Hackbusch and U.Trottenberg,editors,Multigrid methods III,page ,1991.Google Scholar
  47. [47]
    C.-A.Thole and U.Trottenberg.Basic smoothing procedures for the multigrid treatment of elliptic 3D-operators.Appl.Math.Comp.,19:333–345,1986.CrossRefzbMATHMathSciNetGoogle Scholar
  48. [48]
    P.K.W.Vinsome.ORTHOMIN,an iterative method for solving sparse sets of simultaneous linear equations.Society of Petroleum Engineers,1976.paper SPE 5729.Google Scholar
  49. [49]
    P.Wesseling.Cell-centered multigrid for interface problems.J.Comp.Phys.,79:85–91,1988.CrossRefzbMATHMathSciNetGoogle Scholar
  50. [50]
    P.Wesseling.Cell-centered multigrid for interface problems.In In McCormick (1988),pages 631–641,1988.Google Scholar
  51. [51]
    P.Wesseling.An introduction to multigrid methods.John Wiley & Sons,Chichester,1992.zbMATHGoogle Scholar
  52. [52]
    P.Wesseling.Numerical solution of the stationary Navier-Stokes equations by means of a multiple grid method and Newton iteration.Technical Report Report NA-18,Dept.of Technical Math,and Inf.,Delft University of Technology,1977.Google Scholar
  53. [53]
    P.Wesseling.A robust and efficient multigrid method.In Hackbusch and Trottenberg (1982),pages 614–630.CrossRefGoogle Scholar
  54. [54]
    P.Wesseling.Two remarks on multigrid methods.In Hackbusch (1989),pages 209–216.Google Scholar
  55. [55]
    P.Wesseling and P.Sonneveld.Numerical experiments with a multiple grid and a preconditioned Lanczos type method.In R.Rautmann,editor,Approximation methods for Navier-Stokes problems,pages 543–562,Springer-Verlag,Berlin,1980.Lecture Notes in Math.771.Google Scholar
  56. [56]
    G.Wittum.Linear iterations as smoothers in multigrid methods:theory with applications to incomplete decompositions.Impact of Computing in Science and Engineering,1:180–215,1989.CrossRefzbMATHGoogle Scholar
  57. [57]
    G.Wittum.On the robustness of ILU smoothing.SIAM J.Sci.Stat.Comp.,10:699–717,1989.zbMATHMathSciNetGoogle Scholar

Copyright information

© Friedr. Vieweg & Sohn Verlagsgesellschaft mbH, Braunschweig/Wiesbaden 1993

Authors and Affiliations

  • P. Wesseling
    • 1
  1. 1.Department of Technical Mathematics and InformaticsDelft University of TechnologyDelftThe Netherlands

Personalised recommendations