The effect of incomplete decomposition preconditioning on the convergence of Conjugate Gradients

  • Henk A. Van der Vorst
  • Gerard G. L. Sleijpen
Part of the Notes on Numerical Fluid Mechanics (NNFM) book series (NNFM, volume 29)


The ICCG method, for the iterative solution of the large sparse linear system Ax = b (A is symmetric positive definite) consists of the preconditioning of the system, using an incomplete Choleski decomposition K of the matrix A, and the subsequent iterative solution of this system by the conjugate gradients method. For the construction of an incomplete Choleski decomposition it is, in addition, desirable that A be an M-matrix (see, e.g., [12]).


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    O.Axelsson.Solution of linear systems of equations:iterative methods.In V.A.Barker,editor,Sparse Matrix Techniques,Copenhagen 1976,Springer Verlag,Berlin,1977.Google Scholar
  2. [2]
    P.Concus,G.H.Golub,and D.P.O’Leary.A generalized conjugate gradient method for the numerical solution of elliptic partial differential equations.In J.R.Bunch and D.J.Rose,editors,Sparse Matrix Computations,Academic Press,New York,1976.Google Scholar
  3. [3]
    G.H.Golub and C.F.van Loan.Matrix Computations.The Johns Hopkins University Press,Baltimore,1989.zbMATHGoogle Scholar
  4. [4]
    M.R.Hestenes and E.Stiefel.Methods of conjugate gradients for solving linear systems.J.Res.Natl.Bur.Stand.,49:409–436,1954.CrossRefMathSciNetGoogle Scholar
  5. [5]
    A.Jennings.Influence of the Eigenvalue Spectrum on the Convergence Rate of the Conjugate Gradient Method.J.Inst.Math.Applic,20:61–72,1977.CrossRefzbMATHMathSciNetGoogle Scholar
  6. [6]
    D.S.Kershaw.The Incomplete Cholesky -Conjugate Gradient method for the iterative solution of systems of linear equations.J.of Comp.Phys.,26:43–65,1978.CrossRefzbMATHMathSciNetGoogle Scholar
  7. [7]
    J.A.Meijerink and H.A.van der Vorst.An iterative solution method for linear systems of which the coefficient matrix is a symmetric M-matrix.Math.Comp.,31:148–162,1977.zbMATHMathSciNetGoogle Scholar
  8. [8]
    B.N.Parlett.The Symmetric Eigenvalue Problem.Prentice-Hall,Englewood Cliffs,N.J.,1980.zbMATHGoogle Scholar
  9. [9]
    A.van der Sluis and H.A.van der Vorst.The rate of convergence of conjugate gradients.Numer.Math.,48:543–560,1986.CrossRefzbMATHMathSciNetGoogle Scholar
  10. [10]
    A.van der Sluis and H.A.van der Vorst.The convergence behavior of Ritz values in the presence of close eigenvalues.Lin.Alg.and its Appi,88/89:651–694,1987.CrossRefGoogle Scholar
  11. [11]
    H.A.van der Vorst.Preconditioning by Incomplete Decompositions.PhD Thesis,Utrecht University,1982.Google Scholar
  12. [12]
    R.S.Varga.Matrix Iterative Analysis.Prentice-Hall,Englewood Cliffs N.J.,1962.Google Scholar

Copyright information

© Friedr. Vieweg & Sohn Verlagsgesellschaft mbH, Braunschweig/Wiesbaden 1993

Authors and Affiliations

  • Henk A. Van der Vorst
    • 1
  • Gerard G. L. Sleijpen
    • 1
  1. 1.Mathematical InstituteUniversity of UtrechtUtrechtthe Netherlands

Personalised recommendations