On ordering strategies in a multigrid algorithm

  • Stefan Turek
Part of the Notes on Numerical Fluid Mechanics (NNFM) book series (NNFM, volume 29)


We present some numerical results for the influence of grid renumbering strategies on multigrid smoothers applied to the Stokes equations. Using discrete divergence-free finite elements we get positive definite stiffness matrices, which allow the use of standard smoothers such as Jacobi-, Gauß-Seidel- and ILU-relaxation. For different ordering strategies (finite element two level ordering, geometrical ordering (row- and linewise), Cuthill-McKee-algorithm) we show the costs of the renumbering and the convergence rates for solving the Stokes equations on several types of domains and subdivisions. These convergence results carry over to an algorithm for solving the stationary and instationary Navier-Stokes equations.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Blum, H., Harig, J., Müller S.: FEAT . Finite element analysis tools. Release 1.1. User Manual ,Technischer Report Nr. 554, SFB 123, Universität Heidelberg, 1990Google Scholar
  2. [2]
    Cuthill, E., McKee, J.: Reducing the bandwidth of sparse symmetric matrices , in Proc. ACM Nat. Conf., 157–172, New York 1969Google Scholar
  3. [3]
    Girault, V., Raviart, P.A.: Finite Element Methods for Navier-Stokes equations ,Springer, Berlin-Heidelberg 1986CrossRefzbMATHGoogle Scholar
  4. [4]
    Rannacher, R., Turek, S.: A simple nonconforming quadrilateral Stokes element ,Technischer Report Nr. 567, SFB 123, Universität Heidelberg, April 1990Google Scholar
  5. [5]
    Schreiber, P.: Ein robustes und effizientes Mehrgitterverfahren zur Lösung der biharmonischen Gleichung mit nichtkonformen finiten Elementen ,Diplomarbeit, Universität Heidelberg, 1992Google Scholar
  6. [6]
    Schwarz, H.R.: Methode der finiten Elemente ,Teubner, Stuttgart 1984CrossRefGoogle Scholar
  7. [7]
    Turek, S.: Ein robustes und effizientes Mehrgitterverfahren zur Lösung der instationären, inkompressiblen 2-D Navier-Stokes-Gleichungen mit diskret divergenz- freien finiten Elementen ,Dissertation, Heidelberg 1991Google Scholar
  8. [8]
    Turek, S.: Mehrgitterverfahren für eine Klasse von nichtkonformen Finite Elemente Diskretisierungen ,Diplomarbeit, Universität Saarbrücken, 1988Google Scholar
  9. [9]
    Turek, S.: A multigrid Stokes solver using divergence free finite elements ,Technischer Report Nr. 527, SFB 123, Universität Heidelberg, Juli 1989Google Scholar

Copyright information

© Friedr. Vieweg & Sohn Verlagsgesellschaft mbH, Braunschweig/Wiesbaden 1993

Authors and Affiliations

  • Stefan Turek
    • 1
  1. 1.Institut für Angewandte MathematikUniversität HeidelbergHeidelbergDeutschland

Personalised recommendations