New Estimates of the Contraction Number of V-cycle Multi-Grid with Applications to Anisotropic Equations

  • Rob Stevenson
Part of the Notes on Numerical Fluid Mechanics (NNFM) book series (NNFM, volume 29)


In this paper we refine the V-cycle multi-grid convergence proofs of Hackbusch and Wittum. We obtain a sharper bound for the contraction number. With this new bound we are able to prove robustness of the V-cycle applied to anisotropic equations when a suitable smoother is used. For a model problem we give some quantitative results.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [Hac85]
    W. Hackbusch. Multi-Grid Methods and Applications. Springer-Verlag, Berlin, 1985.CrossRefzbMATHGoogle Scholar
  2. [Hac91]
    W. Hackbusch. Iterative Lösung großer schwachbesetzter Gleichungssysteme. B.G. Teubner, Stuttgart, 1991.CrossRefzbMATHGoogle Scholar
  3. [MMB87]
    J. Mandel, S. McCormick, and R. Bank. Variational multigrid theory. In S. McCormick, editor, Multigrid Methods ,chapter 5. SIAM, Philadelphia, 1987.Google Scholar
  4. [ST82]
    K. Stüben and U. Trottenberg. Multigrid methods: Fundamental algorithms, model problem analysis and applications. In Hackbusch W. and U. Trottenberg, editors, Multigrid Methods ,Proceedings, Köln-Porz 1981, pages 1–176, Berlin, 1982. Lecture Notes in Mathematics 960, Springer-Verlag.Google Scholar
  5. [Ste91]
    R.P. Stevenson. On the robustness of multi-grid applied to anisotropic equations: Smoothing- and approximation-properties. Preprint 685, University of Utrecht, September 1991. Submitted to Numerische Mathematik.Google Scholar
  6. [Ste92]
    R.P. Stevenson. Sharp estimates of the multi-grid contraction number including the V-cycle. In preparation, 1992.Google Scholar
  7. [Wit89a]
    G. Witturn. Linear iterations as smoothers in multigrid methods: Theory with applications to incomplete decompositions. IMPACT Comput. Sci. Eng. ,1:180-215, 1989.CrossRefGoogle Scholar
  8. [Wit89b]
    G. Wittum. On the robustness of ILU smoothing. SIAM J. Sci. Stat. Comput. ,10 (4): 699–717, July 1989.CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Friedr. Vieweg & Sohn Verlagsgesellschaft mbH, Braunschweig/Wiesbaden 1993

Authors and Affiliations

  • Rob Stevenson
    • 1
  1. 1.Department of MathematicsUniversity of UtrechtUtrechtThe Netherlands

Personalised recommendations