The Construction of the Interpolation Operator with I L U Decomposition for Algebraic Positive Definite Systems

  • Constantin Popa
Part of the Notes on Numerical Fluid Mechanics (NNFM) book series (NNFM, volume 29)


We present in this paper two results concerning the convergence of the teo-grid algebraic algorithm for arbitrary symmetric systems of linear equations which are also positive definite.Ue obtain these results using a special construction of the interpolation operator based on Gaussian elimination on a sub-matrix of the original system matrix.At the end of the paper we make also some remarks concerning the symmetric indefinite systems.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [l]
    Brandt, A. : “Algebraic multigrid theory: the symmetric case”,Preprint ,weizmann Inst.of Science,Rehovot,Israel, 1983 .Google Scholar
  2. [2]
    Greenbaum,A. : “Analysis of a multigrid method as an iterative technique for salving linear systems”,SIAM 3. Num. Anal.,vol. 21,nr.3, (1984),pp.473 to 485 .CrossRefzbMATHMathSciNetGoogle Scholar
  3. [3]
    Hackbusch, W. : “Multigrid methods and applications”,Springer-Verlag Berlin (1985).Google Scholar
  4. [4]
    Juncu, Gh.,Popa, C. : “Introduction to the multigrid method”(in romanianj,Ed. Tehnica,Bucharest(1991) .Google Scholar
  5. [5]
    Meijerink, J.A.,van der Vorst, H.A. : “An iterative solution method for linear systems of which the coefficient matrix is a symmetric M—matrix”,math, of Comp.,vol.31,nr.137(1977),pp.148 to 162 .zbMATHGoogle Scholar
  6. [6]
    Nicolaides, R.A. : “On multigrid convergence in the indefinite case” Report ICASE—VA,nr. 23655,NASA(1977) .Google Scholar
  7. [7]
    Papa, C. : “I L U decompesitien for coarse grid correction step on algebraic multigrid”,in Multigrid Methods II : Special Topics and Applications,G M D Studien,nr.l89(l99l) .Google Scholar
  8. [8]
    Popa, C. :On the smoothing properties of S D R relaxation for algebraic “multigrid method”,Studii si Cerc. Matem.,vol.5(l989) •Google Scholar
  9. [9]
    Popa, C. : “Algebraic multigrid for approximate solutions of symmetric systems,”,to appear in Proceed, of the 4-th Conf. on Math, and Applications,Timisoara,november 1991 .Google Scholar
  10. [10]
    J Ruge, J.,Stuben. K. : “Algebraic multigrid (AMG)”,Arbeitspapiereder G M D,nr. 210 (1986) .Google Scholar

Copyright information

© Friedr. Vieweg & Sohn Verlagsgesellschaft mbH, Braunschweig/Wiesbaden 1993

Authors and Affiliations

  • Constantin Popa
    • 1
  1. 1.Department of MathematicsUniversity of ConstantaConstantaRomania

Personalised recommendations