Seven Pillars to Achieve Energy Efficiency in High-Performance Computing Data Centers

  • Sardar Mehboob Hussain
  • Abdul Wahid
  • Munam Ali Shah
  • Adnan Akhunzada
  • Faheem Khan
  • Noor ul Amin
  • Saba Arshad
  • Ihsan Ali
Part of the EAI/Springer Innovations in Communication and Computing book series (EAISICC)


Nowadays, data centers and high-performance computing (HPC) systems are crucial for intensive computing environments. The energy efficiency in HPC is an evergreen problem. Moreover, energy-efficient design and energy ecology measures are core challenges in HPC. However, current research focuses on practical methods to measure power utilization to take decisions for green computing without exceeding resources and without compromising on performance. This paper surveys the issues, challenges, and their solutions over the period 2010–2016, by focusing on the energy consumption of data centers and HPC systems. We grouped existing problems in energy efficiency that data centers are currently facing. Our contribution is twofold. Firstly, with this categorization, we aim to provide an easy and concise view of the underlying energy efficiency model adopted by each approach. Secondly, we propose seven-pillar framework for energy efficiency in HPC systems and data centers for the first time.


Big data High-performance computing HPC Energy efficiency Data centers 


  1. 1.
    Liu, Y., & Zhu, H. (2010). A survey of the research on power management techniques for high-performance systems. Software Practice and Experience, 40(11), 943–964.CrossRefGoogle Scholar
  2. 2.
    Computing, M. (2013). Energy awareness in HPC: A survey. International Journal of Computer Science and Mobile Computing, 2, 46–51.Google Scholar
  3. 3.
    Kamil, S., Shalf, J., & Strohmaier, E. (2008). Power efficiency in high performance computing. In 2008 IEEE International Symposium on Parallel and Distributed Processing (pp. 1–8).Google Scholar
  4. 4.
    Fürlinger, K., Klausecher, C., & Kranzlmüller, D. (2011). The AppleTV-Cluster: Towards energy efficient parallel computing on consumer electronic devices. In White paper. Ludwig-Maximilians-Universitat.Google Scholar
  5. 5.
    Philip Chen, C. L., & Zhang, C.-Y. (2014). Data-intensive applications, challenges, techniques and technologies: A survey on big data. Information Sciences, 275, 314–347.CrossRefGoogle Scholar
  6. 6.
    Katal, A., Wazid, M., & Goudar, R. H. (2013). Big data: Issues, challenges, tools and good practices. In 2013 6th International Conference on Contemporary Computing IC3 2013 (pp. 404–409).Google Scholar
  7. 7.
    Wu, X., Zhu, X., Wu, G.-Q., & Ding, W. (2014). Data mining with big data. IEEE Transactions on Knowledge and Data Engineering, 26(1), 97–107.CrossRefGoogle Scholar
  8. 8.
    Xu, X., Lin, G., & Wang, J. (2014). An adaptive model of energy consumption predictor for big data centers. In Proceedings of 2014 International Conference on Computer, Communications and Information Technology (pp. 60–64).Google Scholar
  9. 9.
    Villars, R. L., Olofson, C. W., & Eastwood, M. (2011). White paper big data: What it is and why you should care information everywhere, but where’s the knowledge? (pp. 1–14).Google Scholar
  10. 10.
    Reed, D. A., & Dongarra, J. (2015). Exascale computing and big data. Communications of the ACM, 58(7), 56–68.CrossRefGoogle Scholar
  11. 11.
    Hpc, E. (2009). The challenge of energy efficient HPC (pp. 50–57). Doctoral dissertation, Louisiana State University.Google Scholar
  12. 12.
    Wilde, T., Auweter, A., & Shoukourian, H. (2014). The 4 pillar framework for energy efficient HPC data centers. Computer Science, 29(3–4), 241–251.Google Scholar
  13. 13.
    Lövehagen, N., & Bondesson, A. (2013). Evaluating sustainability of using ICT solutions in smart cities – Methodology requirements.Google Scholar
  14. 14.
    Agrawal, D., Das, S., & El Abbadi, A. (2011). Big data and cloud computing: Current state and future opportunities. In Proceedings of the 14th International Conference on Extending Database Technology (pp. 530–533).Google Scholar
  15. 15.
    Kambatla, K., Kollias, G., Kumar, V., & Grama, A. (2014). Trends in big data analytics. Journal of Parallel Distributed Computing, 74(7), 2561–2573.CrossRefGoogle Scholar
  16. 16.
    Rodero, I., Viswanathan, H., Lee, E. K., Gamell, M., Pompili, D., & Parashar, M. (2012). Energy-efficient thermal-aware autonomic management of virtualized HPC cloud infrastructure. Journal of Grid Computing, 10(3), 447–473.CrossRefGoogle Scholar
  17. 17.
    Kaisler, S., & Armour, F. (2013). Big data: Issues and challenges moving forward. In 2013 46th Hawaii International Conference on System Sciences (HICSS) (pp. 995–1004). Maui, HI: IEEE.CrossRefGoogle Scholar
  18. 18.
    Michel, B., Brunschwiler, T., Meijer, G. I., Paredes, S., & Escher, W. (2010). Direct waste heat utilization from liquid-cooled supercomputers. In 14th International Heat Transfer Conference, Washington (p. 23352).Google Scholar
  19. 19.
    Torrellas, J., Quinlan, D., & Livermore, L. (2012). Thrifty: An exascale architecture for energy-proportional computing (pp. 2011–2012).Google Scholar
  20. 20.
    Bakshi, K. (2012). Considerations for big data: Architecture and approach. In 2012 IEEE Aerospace Conference (pp. 1–7).Google Scholar
  21. 21.
    Valentini, G. L., Lassonde, W., Khan, S. U., Min-Allah, N., Madani, S. A., Li, J., et al. (2013). An overview of energy efficiency techniques in cluster computing systems. Cluster Computing, 16(1), 3–15.CrossRefGoogle Scholar
  22. 22.
    Zimmermann, S., Meijer, I., Tiwari, M. K., Paredes, S., Michel, B., & Poulikakos, D. (2012). Aquasar: A hot water cooled data center with direct energy reuse. Energy, 43(1), 237–245.CrossRefGoogle Scholar
  23. 23.
    Crump, G. (2014). The modern HPC storage architecture. Journal of Parallel and Distributed Computing, 74(7), 2561–2573.CrossRefGoogle Scholar
  24. 24.
    Demchenko, Y., & Zhao, Z. (2012). Addressing big data challenges for scientific data infrastructure. In IEEE 4th International Conference (pp. 614–617).Google Scholar
  25. 25.
    Huber, H., Auweter, A., Wilde, T., Meijer, I., Archer, C., Bloth, T., et al. (2012). Case study: LRZ liquid cooling, energy management, contract specialities. In 2012 SC Companion: High Performance Computing, Networking Storage and Analysis (pp. 962–992).CrossRefGoogle Scholar
  26. 26.
    Zomaya, A., Lee, Y., Ge, R., & Cameron, K. (2012). Power-aware high performance computing. In Energy-efficient distributed computing systems. Hoboken, NJ: Wiley.CrossRefGoogle Scholar
  27. 27.
    Meijer, G. I. (2010). Cooling energy-hungry data centers. Science, 328, 318.CrossRefGoogle Scholar
  28. 28.
    Younge, A. J., Henschel, R., Brown, J. T., von Laszewski, G., Qiu, J., & Fox, G. C. (2011). Analysis of virtualization technologies for high performance computing environments. In 2011 IEEE 4th International Conference on Cloud Computing (pp. 9–16).CrossRefGoogle Scholar
  29. 29.
    Clarke, J., Kirk, K., Collins, J., Chopra, A., & Renard, K. (2011, September). Project HPC: A multi-tier architecture for simulation and analysis.Google Scholar
  30. 30.
    Mitra, S. (2014). Using UML modeling to facilitate three-tier architecture projects in software engineering courses. ACM Transactions on Computing Education, 14(3), 1–31.CrossRefGoogle Scholar
  31. 31.
    Jaffe, A. B., & Stavins, R. N. (1994). The energy-efficiency gap: What does it mean? Energy Policy, 22(10), 804–810.CrossRefGoogle Scholar
  32. 32.
    Gupta, A., Sarood, O., Kale, L. V., & Milojicic, D. (2013). Improving HPC application performance in cloud through dynamic load balancing. In 2013 13th IEEE/ACM International Symposium on Cluster, Cloud, and Grid Computing (pp. 402–409).CrossRefGoogle Scholar
  33. 33.
    Tiwari, A., Laurenzano, M. A., Carrington, L., & Snavely, A. (2012). Modeling power and energy usage of HPC kernels. In 2012 IEEE 26th International Parallel and Distributed Processing Symposium Workshops & PhD Forum (pp. 990–998).CrossRefGoogle Scholar
  34. 34.
    Rodero, I., & Parashar, M. (2012). Energy efficiency in HPC systems. In Energy-efficient distributed computing systems (pp. 81–108). Hoboken, NJ: Wiley.CrossRefGoogle Scholar
  35. 35.
    Courtney, M. (2012). The larging-up of big data. Engineering and Technology, 7(8), 72–75.CrossRefGoogle Scholar
  36. 36.
    Mills, B., Znati, T., Melhem, R., Ferreira, K. B., & Grant, R. E. (2014). Energy consumption of resilience mechanisms in large scale systems. In 2014 22nd Euromicro International Conference on Parallel, Distributed and Network-Based Processing (pp. 528–535).CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Sardar Mehboob Hussain
    • 1
  • Abdul Wahid
    • 1
  • Munam Ali Shah
    • 1
  • Adnan Akhunzada
    • 1
  • Faheem Khan
    • 2
  • Noor ul Amin
    • 2
  • Saba Arshad
    • 1
  • Ihsan Ali
    • 3
  1. 1.Department of Computer ScienceCOMSATS Institute of Information TechnologyIslamabadPakistan
  2. 2.Department of Computer ScienceBacha Khan UniversityCharsaddaPakistan
  3. 3.Faculty of Computer Science and Information Technology, University of MalayaKuala LumpurMalaysia

Personalised recommendations