Neuroanatomical Signatures of Acute and Chronic Orofacial Pain

  • M. BrueggerEmail author


The more fully we understand chronic pain, the more adept we as providers will be able to deliver effective care to the patient with TMD. There have been significant advances in our current understanding of the neuroanatomical and neurochemical elements that underlie chronic pain, but the picture of how it is established and maintained is by no means complete. This chapter presents a short synopsis of our current appreciation of pain in general as well as a discussion of the research that contributes to the basis of our contemporary knowledge and theories that help us understand TMD-associated chronic pain.


Orofacial Pain Cortical Pain Network Acute and Chronic Orofacial Pain Dynamic Pain Connectome Multidimensionality of Pain Neuroimaging functional Magnetic Resonance Imaging (fMRI) functional Magnetic Resonance Spectroscopy (fMRS) Electroencephalography (EEG) Magnetoencephalography (MEG) 


  1. 1.
    Penfield W, Boldrey E. Somatic motor and sensory representation in the cerebral cortex of man as studied by electrical stimulation. London: Macmillan; 1937.CrossRefGoogle Scholar
  2. 2.
    Penfield W. Engrams in the human brain: mechanisms of memory. Proc Roy Soc Med. 1968;61:831–40.PubMedGoogle Scholar
  3. 3.
    Penfield W, Jasper H. Epilepsy and the functional anatomy of the human brain. Boston: Brown L; 1954.CrossRefGoogle Scholar
  4. 4.
    Peyron R, Laurent B, García-Larrea L. Functional imaging of brain responses to pain. A review and meta-analysis (2000). Neurophysiol Clin. 2000;30:263–88.CrossRefGoogle Scholar
  5. 5.
    Wager TD, Atlas LY, Lindquist MA, Roy M, Woo C-W, Kross E. An fMRI-based neurologic signature of physical pain. N Engl J Med. 2013;368:1388–97.CrossRefGoogle Scholar
  6. 6.
    Bushnell MC, Duncan GH, Hofbauer RK, Ha B, Chen JI, Carrier B. Pain perception: is there a role for primary somatosensory cortex? Proc Natl Acad Sci U S A. 1999;96:7705–9.CrossRefGoogle Scholar
  7. 7.
    Denk F, McMahon SB, Tracey I. Pain vulnerability: a neurobiological perspective. Nat Neurosci. 2014;17:192–200.CrossRefGoogle Scholar
  8. 8.
    Moayedi M, Davis KD. Theories of pain: from specificity to gate control. J Neurophysiol. 2013;109:5–12.CrossRefGoogle Scholar
  9. 9.
    Tracey I, Mantyh PW. The cerebral signature for pain perception and its modulation. Neuron. 2007;55:377–91.CrossRefGoogle Scholar
  10. 10.
    Kucyi A, Davis KD. The dynamic pain connectome. Trends Neurosci. 2015;38:86–95.CrossRefGoogle Scholar
  11. 11.
    Haggard P, de Boer L. Oral somatosensory awareness. Neurosci Biobehav Rev. 2014;47:469–84.CrossRefGoogle Scholar
  12. 12.
    Scholz J, Woolf CJ. Can we conquer pain? Nat Neurosci. 2002;5:1062–7.CrossRefGoogle Scholar
  13. 13.
    Minde J, Svensson O, Holmberg M, Solders G, Toolanen G. Orthopedic aspects of familial insensitivity to pain due to a novel nerve growth factor beta mutation. Acta Orthop. 2006;77:198–202.CrossRefGoogle Scholar
  14. 14.
    Losa M, Scheier H, Rohner P, Sailer H, Hayek J, Giedion A, Boltshauser E. Langzeitverlauf bei kongenitaler Analgesie. Schweiz Med Wochenschr. 1989;119:1303–8.PubMedGoogle Scholar
  15. 15.
    Baliki MN, Chialvo DR, Geha PY, Levy RM, Harden RN, Parrish TB, Apkarian AV. Chronic pain and the emotional brain: specific brain activity associated with spontaneous fluctuations of intensity of chronic back pain. J Neurosci. 2006;26:12165–73.CrossRefGoogle Scholar
  16. 16.
    Brown RS, Arm RN, Epstein JB. Diagnosis and treatment of chronic orofacial pain, 2nd edn. In: Clinician’s guide. Hamilton, ON: BC Decker; 2008.Google Scholar
  17. 17.
    Apkarian AV, Baliki MN, Geha PY. Towards a theory of chronic pain. Prog Neurobiol. 2009;87:81–97.CrossRefGoogle Scholar
  18. 18.
    Vachon-Presseau E, Tetreault P, Petre B, Huang L, Berger SE, Torbey S, Baria AT, Mansour AR, Hashmi JA, Griffith JW, Comasco E, Schnitzer TJ, Baliki MN, Apkarian AV. Corticolimbic anatomical characteristics predetermine risk for chronic pain. Brain. 2016;139:1958–70.CrossRefGoogle Scholar
  19. 19.
    Treede R-D, Jensen TS, Campbell JN, Cruccu G, Dostrovsky JO, Griffin JW, Hansson P, Hughes R, Nurmikko T, Serra J. Neuropathic pain—redefinition and a grading system for clinical and research purposes. Neurology. 2008;70:1630–5.CrossRefGoogle Scholar
  20. 20.
    Craig ADB. How do you feel—now? The anterior insula and human awareness. Nat Rev Neurosci. 2009;10:59–70.CrossRefGoogle Scholar
  21. 21.
    Legrain V, Iannetti GD, Plaghki L, Mouraux A. The pain matrix reloaded: a salience detection system for the body. Prog Neurobiol. 2011;93:111–24.CrossRefGoogle Scholar
  22. 22.
    van Ryckeghem DML, Crombez G, Eccleston C, Legrain V, van Damme S. Keeping pain out of your mind: the role of attentional set in pain. Eur J Pain. 2013;17:402–11.CrossRefGoogle Scholar
  23. 23.
    Kucyi A, Davis KD. The neural code for pain: from single-cell electrophysiology to the dynamic pain connectome. Neuroscientist. 2017;23(4):397–414.CrossRefGoogle Scholar
  24. 24.
    Davis KD, Kucyi A, Moayedi M. The pain switch: an “ouch” detector. Pain. 2015;156:2164–6.CrossRefGoogle Scholar
  25. 25.
    Mutso AA, Petre B, Huang L, Baliki MN, Torbey S, Herrmann KM, Schnitzer TJ, Apkarian AV. Reorganization of hippocampal functional connectivity with transition to chronic back pain. J Neurophysiol. 2014;111:1065–76.CrossRefGoogle Scholar
  26. 26.
    Napadow V, LaCount L, Park K, As-Sanie S, Clauw DJ, Harris RE. Intrinsic brain connectivity in fibromyalgia is associated with chronic pain intensity. Arthritis Rheum. 2010;62:2545–55.CrossRefGoogle Scholar
  27. 27.
    Baliki MN, Baria AT, Apkarian AV. The cortical rhythms of chronic back pain. J Neurosci. 2011;31:13981–90.CrossRefGoogle Scholar
  28. 28.
    Kucyi A, Moayedi M, Weissman-Fogel I, Goldberg MB, Freeman BV, Tenenbaum HC, Davis KD. Enhanced medial prefrontal-default mode network functional connectivity in chronic pain and its association with pain rumination. J Neurosci. 2014;34:3969–75.CrossRefGoogle Scholar
  29. 29.
    Hutchison RM, Womelsdorf T, Gati JS, Everling S, Menon RS. Resting-state networks show dynamic functional connectivity in awake humans and anesthetized macaques. Hum Brain Mapp. 2013;34:2154–77.Google Scholar
  30. 30.
    Farmer MA, Baliki MN, Apkarian AV. A dynamic network perspective of chronic pain. Neurosci Lett. 2012;520:197–203.CrossRefGoogle Scholar
  31. 31.
    Brügger M, Ettlin DA, Meier M, Keller T, Luechinger R, Barlow A, Palla S, Jäncke L, Lutz K. Taking sides with pain—lateralization aspects related to cerebral processing of dental pain. Front Human Neurosci. 2011;5:12.CrossRefGoogle Scholar
  32. 32.
    Lin C-S. Brain signature of chronic orofacial pain: a systematic review and meta-analysis on neuroimaging research of trigeminal neuropathic pain and temporomandibular joint disorders. PLoS One. 2014;9:e94300.CrossRefGoogle Scholar
  33. 33.
    Ettlin DA, Zhang H, Lutz K, Järmann T, Meier D, Gallo LM, Jäncke L, Palla S. Cortical activation resulting from painless vibrotactile dental stimulation measured by functional magnetic resonance imaging (FMRI). J Dent Res. 2004;83(10):757–61.CrossRefGoogle Scholar
  34. 34.
    Jantsch HHF, Kemppainen P, Ringler R, Handwerker HO, Forster C. Cortical representation of experimental tooth pain in humans. Pain. 2005;118:390–9.CrossRefGoogle Scholar
  35. 35.
    Miyamoto JJ, Honda M, Saito DN, Okada T, Ono T, Ohyama K, Sadato N. The representation of the human oral area in the somatosensory cortex: a functional MRI study. Cereb Cortex. 2006;16:669–75.CrossRefGoogle Scholar
  36. 36.
    Kubo K, Shibukawa Y, Shintani M, Suzuki T, Ichinohe T, Kaneko Y. Cortical representation area of human dental pulp. J Dent Res. 2008;87:358–62.CrossRefGoogle Scholar
  37. 37.
    Brügger M, Ettlin DA, Keller T, Luechinger R, Jäncke L, Palla S, Barlow A, Gallo LM, Lutz K. Interindividual differences in the perception of dental stimulation and related brain activity. Eur J Oral Sci. 2009;117:27–33.Google Scholar
  38. 38.
    Trulsson M, Francis ST, Bowtell R, McGlone F. Brain activations in response to vibrotactile tooth stimulation: a psychophysical and fMRI study. J Neurophysiol. 2010;104:2257–65.CrossRefGoogle Scholar
  39. 39.
    Weigelt A, Terekhin P, Kemppainen P, Dörfler A, Forster C. The representation of experimental tooth pain from upper and lower jaws in the human trigeminal pathway. Pain. 2010;149:529–38.Google Scholar
  40. 40.
    Gutzeit A, Meier D, Meier ML, von Weymarn C, Ettlin DA, Graf N, Froehlich JM, Binkert CA, Brügger M. Insula-specific responses induced by dental pain. A proton magnetic resonance spectroscopy study. Eur Radiol. 2011;21:807–15.CrossRefGoogle Scholar
  41. 41.
    Brügger M, Lutz K, Brönnimann B, Meier ML, Luechinger R, Barlow A, Jäncke L, Ettlin DA. Tracing toothache intensity in the brain. J Dent Res. 2012;91:156–60.CrossRefGoogle Scholar
  42. 42.
    Meier ML, Brügger M, Ettlin DA, Luechinger R, Barlow A, Jäncke L, Lutz K. Brain activation induced by dentine hypersensitivity pain—an fMRI study. J Clin Periodontol. 2012;39:441–7.CrossRefGoogle Scholar
  43. 43.
    Gutzeit A, Meier D, Froehlich JM, Hergan K, Kos S, V Weymarn C, Lutz K, Ettlin D, Binkert CA, Mutschler J, Sartoretti-Schefer S, Brügger M. Differential NMR spectroscopy reactions of anterior/posterior and right/left insular subdivisions due to acute dental pain. Eur Radiol. 2013;23:450–60.CrossRefGoogle Scholar
  44. 44.
    Meier ML, Widmayer S, Abazi J, Brügger M, Lukic N, Lüchinger R, Ettlin DA. The human brain response to dental pain relief. J Dent Res. 2015;94(5):690–6.CrossRefGoogle Scholar
  45. 45.
    de Matos NMP, Hock A, Wyss M, Ettlin DA, Brügger M. Neurochemical dynamics of acute orofacial pain in the human trigeminal brainstem nuclear complex. Neuroimage. 2017;162:162–72.Google Scholar
  46. 46.
    Baas D, Aleman A, Kahn RS. Lateralization of amygdala activation: a systematic review of functional neuroimaging studies. Brain Res Rev. 2004;45:96–103.CrossRefGoogle Scholar
  47. 47.
    Neugebauer V, Li W. Differential sensitization of amygdala neurons to afferent inputs in a model of arthritic pain. J Neurophysiol. 2003;89:716–27.CrossRefGoogle Scholar
  48. 48.
    Neugebauer V, Li W, Bird GC, Han JS. The amygdala and persistent pain. Neuroscientist. 2004;10:221–34.CrossRefGoogle Scholar
  49. 49.
    Meier ML, de Matos NMP, Brügger M, Ettlin DA, Lukic N, Cheetham M, Jäncke L, Lutz K. Equal pain-unequal fear response: enhanced susceptibility of tooth pain to fear conditioning. Front Hum Neurosci. 2014;8:526.PubMedPubMedCentralGoogle Scholar
  50. 50.
    Mathiak KA, Zvyagintsev M, Ackermann H, Mathiak K. Lateralization of amygdala activation in fMRI may depend on phase-encoding polarity. Magma. 2012;25:177–82.CrossRefGoogle Scholar
  51. 51.
    Boubela RN, Kalcher K, Huf W, Seidel E-M, Derntl B, Pezawas L, Našel C, Moser E. fMRI measurements of amygdala activation are confounded by stimulus correlated signal fluctuation in nearby veins draining distant brain regions. Sci Rep. 2015;5:10499.CrossRefGoogle Scholar
  52. 52.
    Vogt BA. Pain and emotion interactions in subregions of the cingulate gyrus. Nat Rev Neurosci. 2005;6:533–44.CrossRefGoogle Scholar
  53. 53.
    Nieuwenhuys R, Voogd J, van Huijzen C. The human central nervous system. 4th ed. Berlin: Springer; 2008.CrossRefGoogle Scholar
  54. 54.
    Kurth F, Zilles K, Fox PT, Laird AR, Eickhoff SB. A link between the systems: functional differentiation and integration within the human insula revealed by meta-analysis. Brain Struct Funct. 2010;214:519–34.CrossRefGoogle Scholar
  55. 55.
    Baliki MN, Geha PY, Apkarian AV. Parsing pain perception between nociceptive representation and magnitude estimation. J Neurophysiol. 2009;101:875–87.CrossRefGoogle Scholar
  56. 56.
    Mazzola L, Isnard J, Peyron R, Mauguière F. Stimulation of the human cortex and the experience of pain: Wilder Penfield’s observations revisited. Brain. 2012;135:631–40.CrossRefGoogle Scholar
  57. 57.
    Pomares FB, Faillenot I, Barral FG, Peyron R. The ‘where’ and the ‘when’ of the BOLD response to pain in the insular cortex. Discussion on amplitudes and latencies. NeuroImage. 2013;64:466–75.CrossRefGoogle Scholar
  58. 58.
    Mouraux A, Diukova A, Lee MC, Wise RG, Iannetti GD. A multisensory investigation of the functional significance of the “pain matrix”. NeuroImage. 2011;54:2237–49.CrossRefGoogle Scholar
  59. 59.
    Sessle BJ. Peripheral and central mechanisms of orofacial inflammatory pain. Int Rev Neurobiol. 2011;97:179–206.CrossRefGoogle Scholar
  60. 60.
    Craig ADB. The sentient self. Brain Struct Funct. 2010;214:563–77.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Center of Dental MedicineUniversity of ZurichZurichSwitzerland

Personalised recommendations