Advertisement

Functional Anatomy and Biomechanics of the Temporomandibular Joint

  • L. M. GalloEmail author
  • V. Colombo
Chapter

Abstract

Evolving from pure anatomy, this chapter focuses on TMJ motor function and dysfunction. Functional anatomy and its morphological structures are the limits where the mandibular movements and its central and peripheral neurological inputs can govern TMJ motion.
  • The masticatory system as a functional unit

  • Definition of mandibular positions and limitations of its analysis

  • Descriptions of mandibular dynamics in function and dysfunction

  • TMJ static and dynamic loading

Keywords

Masticatory system Statics Dynamics TMJ loading Dynamic loading 

References

  1. 1.
    Morquette P, Lavoie R, Fhima M-D, Lamoureux X, Verdier D, Kolta A. Generation of the masticatory central pattern and its modulation by sensory feedback. Prog Neurobiol. 2012;96:340–55.CrossRefGoogle Scholar
  2. 2.
    Harris-Warrick RM. General principles of rhythmogenesis in central pattern generator networks. Prog Brain Res. 2010;187:213–22.CrossRefGoogle Scholar
  3. 3.
    Daun S, Rubin JE, Rybak IA. Control of oscillation periods and phase durations in half-center central pattern generators: a comparative mechanistic analysis. J Comput Neurosci. 2009;27:3–36.CrossRefGoogle Scholar
  4. 4.
    Barlow SM, Estep M. Central pattern generation and the motor infrastructure for suck, respiration, and speech. J Commun Disord. 2006;39:366–80.CrossRefGoogle Scholar
  5. 5.
    Lund JP, Kolta A. Generation of the central masticatory pattern and its modification by sensory feedback. Dysphagia. 2006;21:167–74.CrossRefGoogle Scholar
  6. 6.
    Türker KS. Reflex control of human jaw muscles. Crit Rev Oral Biol Med. 2002;13:85–104.CrossRefGoogle Scholar
  7. 7.
    Iwasaki LR, Gonzalez YM, Liu Y, et al. Mechanobehavioral scores in women with and without TMJ disc displacement. J Dent Res. 2017;96:895–901.CrossRefGoogle Scholar
  8. 8.
    The glossary of prosthodontic terms: ninth edition. J Prosthet Dent. 2017;117:e1–105.Google Scholar
  9. 9.
    Michelotti A, Farella M, Vollaro S, Martina R. Mandibular rest position and electrical activity of the masticatory muscles. J Prosthet Dent. 1997;78:48–53.CrossRefGoogle Scholar
  10. 10.
    Posselt U. Range of movement of the mandible. J Am Dent Assoc. 1958;56:10–3.CrossRefGoogle Scholar
  11. 11.
    Salaorni C, Palla S. Condylar rotation and anterior translation in healthy human temporomandibular joints. Schweizer Monatsschrift fur Zahnmedizin = Revue mensuelle suisse d’odonto-stomatologie = Rivista mensile svizzera di odontologia e Stomatologia. 1994;104:415–22.PubMedGoogle Scholar
  12. 12.
    Ferrario VF, Sforza C, Lovecchio N, Mian F. Quantification of translational and gliding components in human temporomandibular joint during mouth opening. Arch Oral Biol. 2005;50:507–15.CrossRefGoogle Scholar
  13. 13.
    Mapelli A, Galante D, Lovecchio N, Sforza C, Ferrario VF. Translation and rotation movements of the mandible during mouth opening and closing. Clin Anat. 2009;22:311–8.CrossRefGoogle Scholar
  14. 14.
    Gallagher C, Gallagher V, Whelton H, Cronin M. The normal range of mouth opening in an Irish population. J Oral Rehabil. 2004;31:110–6.CrossRefGoogle Scholar
  15. 15.
    Wilkinson TM, Crowley CM. A histologic study of retrodiscal tissues of the human temporomandibular joint in the open and closed position. J Orofac Pain. 1994;8:7–17.PubMedGoogle Scholar
  16. 16.
    Bowley JF, Pierce CJ. Reliability and validity of a transverse horizontal axis location instrument. J Prosthet Dent. 1990;64:646–50.CrossRefGoogle Scholar
  17. 17.
    Hayashi T, Itoh K, Miyakawa M. Determination of the kinematic axis point of the temporomandibular joint regardless of cyclic mandibular movement data. Front Med Biol Eng. 1994;6:199–208.PubMedGoogle Scholar
  18. 18.
    Ferrario VF, Sforza C, Miani A, Serrao G, Tartaglia G. Open-close movements in the human temporomandibular joint: does a pure rotation around the intercondylar hinge axis exist? J Oral Rehabil. 1996;23:401–8.CrossRefGoogle Scholar
  19. 19.
    Gallo LM, Gössi DB, Colombo V, Palla S. Relationship between kinematic center and TMJ anatomy and function. J Dent Res. 2008;87:726–30.CrossRefGoogle Scholar
  20. 20.
    Gallo LM, Airoldi GB, Airoldi RL, Palla S. Description of mandibular finite helical axis pathways in asymptomatic subjects. J Dent Res. 1997;76:704–13.CrossRefGoogle Scholar
  21. 21.
    Gallo LM, Brasi M, Ernst B, Palla S. Relevance of mandibular helical axis analysis in functional and dysfunctional TMJs. J Biomech. 2006;39:1716–25.CrossRefGoogle Scholar
  22. 22.
    Leiggener CS, Erni S, Gallo LM. Novel approach to the study of jaw kinematics in an alloplastic TMJ reconstruction. Int J Oral Maxillofac Surg. 2012;41:1041–5.CrossRefGoogle Scholar
  23. 23.
    Palla S, Gallo LM, Gössi D. Dynamic stereometry of the temporomandibular joint. Orthod Craniofac Res. 2003;6(Suppl 1):37–47.CrossRefGoogle Scholar
  24. 24.
    Holste T. Untersuchungen über den Bennett-Winkel. Deutsche zahnarztliche Zeitschrift. 1980;35:315–7.PubMedGoogle Scholar
  25. 25.
    Fanucci E, Spera E, Ottria L, et al. Bennett movement of mandible: a comparison between traditional methods and a 64-slices CT scanner. Oral Implantol. 2008;1:15–20.Google Scholar
  26. 26.
    Klineberg I. Influences of temporomandibular articular mechanoreceptors in functional jaw movements. J Oral Rehabil. 1980;7:307–17.CrossRefGoogle Scholar
  27. 27.
    Ayesh EE, Ernberg M, Svensson P. Effects of local anesthetics on somatosensory function in the temporomandibular joint area. Exp Brain Res. 2007;180:715–25.CrossRefGoogle Scholar
  28. 28.
    Macefield VG. Physiological characteristics of low-threshold mechanoreceptors in joints, muscle and skin in human subjects. Clin Exp Pharmacol Physiol. 2005;32:135–44.CrossRefGoogle Scholar
  29. 29.
    Kawamura Y, Abe K. Role of sensory information from temporomandibular joint. Bull Tokyo Med Dent Univ. 1974;21(Suppl):78–82.PubMedGoogle Scholar
  30. 30.
    Suzuki O, Tsuboi A, Tabata T, Takafuji Y, Sakurai T, Watanabe M. Response properties of temporomandibular joint mechanosensitive neurons in the trigeminal sensory complex of the rabbit. Exp Brain Res. 2012;222:113–23.CrossRefGoogle Scholar
  31. 31.
    Tsuboi A, Takafuji Y, Itoh S, Nagata K, Tabata T, Watanabe M. Response properties of trigeminal ganglion mechanosensitive neurons innervating the temporomandibular joint of the rabbit. Exp Brain Res. 2009;199:107–16.CrossRefGoogle Scholar
  32. 32.
    Olsson KA, Sasamoto K, Lund JP. Modulation of transmission in rostral trigeminal sensory nuclei during chewing. J Neurophysiol. 1986;55:56–75.CrossRefGoogle Scholar
  33. 33.
    Proschel P. An extensive classification of chewing patterns in the frontal plane. Cranio. 1987;5:55–63.CrossRefGoogle Scholar
  34. 34.
    Pröschel P. Zum Einfluss der Okklusalflächenform auf den Bewegungsablauf des Unterkiefers bei der Kaufunktion. Deutsche zahnarztliche Zeitschrift. 1988;43:1099–103.PubMedGoogle Scholar
  35. 35.
    Proschel P, Hofmann M, Ott R. Zur Orthofunktion des Kauorgans. Deutsche zahnarztliche Zeitschrift. 1985;40:186–91.PubMedGoogle Scholar
  36. 36.
    Pröschel P, Hofmann M. Zur Problematik der Interpretation von funktionellen Unterkieferbewegungen. Teil I: Die Auswirkungen multifaktorieller Einflüsse auf die Interpretierbarkeit von Kaubewegungsaufzeichnungen. Deutsche zahnarztliche Zeitschrift. 1987;42:696–700.PubMedGoogle Scholar
  37. 37.
    Pröschel P, Hofmann M. Frontal chewing patterns of the incisor point and their dependence on resistance of food and type of occlusion. J Prosthet Dent. 1988;59:617–24.CrossRefGoogle Scholar
  38. 38.
    Ottenhoff FA, van der Bilt A, van der Glas HW, Bosman F. Control of elevator muscle activity during simulated chewing with varying food resistance in humans. J Neurophysiol. 1992;68:933–44.CrossRefGoogle Scholar
  39. 39.
    Ottenhoff FA, van der Bilt A, van der Glas HW, Bosman F. Control of human jaw elevator muscle activity during simulated chewing with varying bolus size. Exp Brain Res. 1993;96:501–12.CrossRefGoogle Scholar
  40. 40.
    Johansson RS, Trulsson M, Olsson KA, Abbs JH. Mechanoreceptive afferent activity in the infraorbital nerve in man during speech and chewing movements. Exp Brain Res. 1988;72:209–14.CrossRefGoogle Scholar
  41. 41.
    Johansson RS, Trulsson M, Olsson KA, Westberg KG. Mechanoreceptor activity from the human face and oral mucosa. Exp Brain Res. 1988;72:204–8.CrossRefGoogle Scholar
  42. 42.
    Trulsson M. Sensory-motor function of human periodontal mechanoreceptors. J Oral Rehabil. 2006;33:262–73.CrossRefGoogle Scholar
  43. 43.
    Piancino MG, Isola G, Cannavale R, et al. From periodontal mechanoreceptors to chewing motor control: a systematic review. Arch Oral Biol. 2017;78:109–21.CrossRefGoogle Scholar
  44. 44.
    Raphael KG, Janal MN, Sirois DA, et al. Validity of self-reported sleep bruxism among myofascial temporomandibular disorder patients and controls. J Oral Rehabil. 2015;42:751–8.CrossRefGoogle Scholar
  45. 45.
    American Academy of Sleep Medicine. International classification of sleep disorders. 3rd ed. Darien, IL: American Academy of Sleep Medicine; 2014.Google Scholar
  46. 46.
    Gonzalez Y, Iwasaki LR, McCall WD, Ohrbach R, Lozier E, Nickel JC. Reliability of electromyographic activity vs. bite-force from human masticatory muscles. Eur J Oral Sci. 2011;119:219–24.CrossRefGoogle Scholar
  47. 47.
    Khoury S, Carra MC, Huynh N, Montplaisir J, Lavigne GJ. Sleep bruxism-tooth grinding prevalence, characteristics and familial aggregation: a large cross-sectional survey and polysomnographic validation. Sleep. 2016;39:2049–56.CrossRefGoogle Scholar
  48. 48.
    Po JMC, Kieser JA, Gallo LM, Tésenyi AJ, Herbison P, Farella M. Time-frequency analysis of chewing activity in the natural environment. J Dent Res. 2011;90:1206–10.CrossRefGoogle Scholar
  49. 49.
    Lavigne GJ, Rompré PH, Poirier G, Huard H, Kato T, Montplaisir JY. Rhythmic masticatory muscle activity during sleep in humans. J Dent Res. 2001;80:443–8.CrossRefGoogle Scholar
  50. 50.
    Po JMC, Gallo LM, Michelotti A, Farella M. Comparison between the rhythmic jaw contractions occurring during sleep and while chewing. J Sleep Res. 2013;22:593–9.CrossRefGoogle Scholar
  51. 51.
    Nickel JC, McLachlan KR. In vitro measurement of the frictional properties of the temporomandibular joint disc. Arch Oral Biol. 1994;39:323–31.CrossRefGoogle Scholar
  52. 52.
    Nickel JC, McLachlan KR. In vitro measurement of the stress-distribution properties of the pig temporomandibular joint disc. Arch Oral Biol. 1994;39:439–48.CrossRefGoogle Scholar
  53. 53.
    Schmolke C. The relationship between the temporomandibular joint capsule, articular disc and jaw muscles. J Anat. 1994;184(Pt 2):335–45.PubMedPubMedCentralGoogle Scholar
  54. 54.
    Schmolke C, Hugger A. The human temporomandibular joint region in different positions of the mandible. Ann Anat. 1999;181:61–4.CrossRefGoogle Scholar
  55. 55.
    Gallo LM, Nickel JC, Iwasaki LR, Palla S. Stress-field translation in the healthy human temporomandibular joint. J Dent Res. 2000;79:1740–6.CrossRefGoogle Scholar
  56. 56.
    Gössi DB, Gallo LM, Bahr E, Palla S. Dynamic intra-articular space variation in clicking TMJs. J Dent Res. 2004;83:480–4.CrossRefGoogle Scholar
  57. 57.
    Chen Y-J, Gallo LM, Palla S. The mediolateral temporomandibular joint disc position: an in vivo quantitative study. J Orofac Pain. 2002;16:29–38.PubMedGoogle Scholar
  58. 58.
    Colombo V, Palla S, Gallo LM. Temporomandibular joint loading patterns related to joint morphology: a theoretical study. Cells Tissues Organs. 2008;187:295–306.CrossRefGoogle Scholar
  59. 59.
    Nickel JC, McLachlan KR. An analysis of surface congruity in the growing human temporomandibular joint. Arch Oral Biol. 1994;39:315–21.CrossRefGoogle Scholar
  60. 60.
    Gallo LM, Chiaravalloti G, Iwasaki LR, Nickel JC, Palla S. Mechanical work during stress-field translation in the human TMJ. J Dent Res. 2006;85:1006–10.CrossRefGoogle Scholar
  61. 61.
    Palla S, Krebs M, Gallo LM. Jaw tracking and temporomandibular joint animation. In: McNeill C, editor. Science and practice of occlusion. Chicago, IL: Quintessence Publishing; 1997. p. 365–78.Google Scholar
  62. 62.
    Fushima K, Gallo LM, Krebs M, Palla S. Analysis of the TMJ intraarticular space variation: a non-invasive insight during mastication. Med Eng Phys. 2003;25:181–90.CrossRefGoogle Scholar
  63. 63.
    Rues S, Lenz J, Türp JC, Schweizerhof K, Schindler HJ. Muscle and joint forces under variable equilibrium states of the mandible. Clin Oral Investig. 2011;15:737–47.CrossRefGoogle Scholar
  64. 64.
    Ettlin DA, Mang H, Colombo V, Palla S, Gallo LM. Stereometric assessment of TMJ space variation by occlusal splints. J Dent Res. 2008;87:877–81.CrossRefGoogle Scholar
  65. 65.
    Capuozzo R, Farella M, Gallo LM, Palla S. Effects of low-level clenching on TMJ intra-articular distances. J Oral Rehabil. 2011;38:E2–E22.CrossRefGoogle Scholar
  66. 66.
    Iwasaki LR, Gonzalez YM, Liu H, Marx DB, Gallo LM, Nickel JC. A pilot study of ambulatory masticatory muscle activities in temporomandibular joint disorders diagnostic groups. Orthod Craniofac Res. 2015;18(Suppl 1):146–55.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Laboratory of Physiology and Biomechanics of the Masticatory SystemUniversity of Zurich, Center of Dental MedicineZurichSwitzerland

Personalised recommendations