Advertisement

Micro-scale Real-Time Wear Dynamics Investigated by Synchroton Radiation

  • M. Belin
  • Jean-Michel Martin
  • J. Schou
  • I. L. Rasmussen
  • R. Feidenhans’l
  • T. Straasø
  • N. J. Mikkelsen
Chapter
Part of the Microtechnology and MEMS book series (MEMS)

Abstract

In situ wear measurements on a hard coating of TiAlN and CrN layers deposited on vitreous carbon have been carried out with synchroton radiation. The results show that wear dynamics can be successfully monitored on a lateral micrometer scale and with a submicrometer depth resolution. The wear process is highly irregular and the local wear rate may vary strongly from one position to another in the same wear track. Most of the ridges and grooves are generated within the first 500 nm and exist over several micrometers.

Notes

Acknowledgements

The authors thank Cornelius Strohm and other staff members at beam line ID 24 at ESRF for competent assistance. This work has been supported by the Danish Strategic Research Council with the NABIIT grant 2106-05-0035.

References

  1. 1.
    B.N.J. Persson, U. Tartaglino, O. Albohr, E. Tosatti, Nat. Mater. 3, 882–885 (2004)CrossRefGoogle Scholar
  2. 2.
    K. Holmberg, A. Matthews, Coatings Tribology. Properties, Mechanisms, Techniques and Applications in Surface Engineering (Elsevier, Amsterdam, The Netherlands, 2009)Google Scholar
  3. 3.
    B. Gotsmann, M.A. Lantz, Phys. Rev. Lett. 101, 125501 (2008)CrossRefGoogle Scholar
  4. 4.
    A. Erdemir, C. Donnet, J. Phys. D: Appl. Phys. 39(18), (2006)CrossRefGoogle Scholar
  5. 5.
    H. Bhaskaran et al., Nat. Nanotechnol. 5, 181 (2010)CrossRefGoogle Scholar
  6. 6.
    A. Filippov, V.L. Popov, M. Urbakh, Phys. Rev. Lett. 106, 025502 (2011)CrossRefGoogle Scholar
  7. 7.
    N.N. Gosvami et al., Phys. Rev. Lett. 107, 144303 (2011)CrossRefGoogle Scholar
  8. 8.
    Q. Luo, PEh Hovsepian, Thin Solid Films 497, 203–209 (2006)CrossRefGoogle Scholar
  9. 9.
    X. Li, C. Li, Y. Zhang, H. Tang, G. Li, C. Mo, Appl. Surf. Sci. 256, 4272 (2010)CrossRefGoogle Scholar
  10. 10.
    Q. Luo, Tribol. Lett. 37, 529 (2010)CrossRefGoogle Scholar
  11. 11.
    N. Hiraoka, E. Yamane, Tribol. Lett. 41, 479 (2011)CrossRefGoogle Scholar
  12. 12.
    M. Duarte, I. Vragovic, J.M. Molina, R. Prieto, J. Narciso, E. Louis, Phys. Rev. Lett. 102, 045501 (2009)CrossRefGoogle Scholar
  13. 13.
    L. Joly-Pottuz, J.-M. Martin, M. Belin, F. Dassenoy, G. Montagnac, B. Reynard, Appl. Phys. Lett. 91, 153107 (2007)CrossRefGoogle Scholar
  14. 14.
    S. Pascarelli, O. Mathon, M. Munoz, T. Mairs, J. Susini, J. Synchroton Rad. 13, 351–358 (2006)CrossRefGoogle Scholar
  15. 15.
    I.L. Rasmussen, N. Pryds, H.C. Pedersen, J. Schou, N.J. Mikkelsen, J. Phys. D Appl. Phys. 41, 135307 (2008)CrossRefGoogle Scholar
  16. 16.
    I.L. Rasmussen, M. Guibert, J.-M. Martin, M. Belin, N.J. Mikkelsen, H.C. Pedersen, J. Schou, Tribol. Lett. 37, 15 (2010)CrossRefGoogle Scholar
  17. 17.
  18. 18.
    S. Kimura, S. Emura, H. Ofuchi, Y.K. Zhou, S. Hasegawa, H. Asahiet, J. Crystal Growth 301–302, 651 (2007)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • M. Belin
    • 1
  • Jean-Michel Martin
    • 1
  • J. Schou
    • 2
  • I. L. Rasmussen
    • 2
  • R. Feidenhans’l
    • 3
  • T. Straasø
    • 2
    • 3
  • N. J. Mikkelsen
    • 4
  1. 1.Laboratoire de Tribologie et Dynamique des Systèmes, CNRS UMR 5512Ecole Centrale de LyonEcullyFrance
  2. 2.DTU Fotonik, Technical University of DenmarkRoskildeDenmark
  3. 3.Niels Bohr Institute, University of CopenhagenCopenhagenDenmark
  4. 4.CemeCon ASÅbyhøjDenmark

Personalised recommendations