In Situ Observation of Lubricating Films by Micro-FTIR

  • Shigeyuki MoriEmail author
Part of the Microtechnology and MEMS book series (MEMS)


Tribological properties closely depend on the structures of lubricating films between moving surfaces. Lubricating films are formed at lubricating contacts under dynamic conditions, including high temperature, high pressure and high shearing. Thus, structures of lubricating films are greatly affected by the conditions of the environment. In situ observation of lubricating films by micro-FTIR is described in order to characterize the film components and structure formed from lubricants under dynamic conditions.


  1. 1.
    H.A. Spikes, In situ methods for tribology research. Tribol. Lett. 14(1), 1 (2003)CrossRefGoogle Scholar
  2. 2.
    G.J. Johnston, R. Wayte, H.A. Spikes, The measurement and study of very thin lubricant films in concentrated contacts. STLE Tribol. Trans. 34(2), 187 (1991)CrossRefGoogle Scholar
  3. 3.
    J. Lauer, K. Vincent, Fourier emission infrared microspectrophotometer for surface analysis. I. Application to lubrication problems. Infrared Phys. 19(3–4), 395 (1979)CrossRefGoogle Scholar
  4. 4.
    P.M. Cann, H.A. Spikes, In lubro studies of lubricants in EHD contacts using FTIR absorption spectroscopy. Tribol. Trans. 34(2), 248 (1991)CrossRefGoogle Scholar
  5. 5.
    P.M. Cann, H.A. Spikes, In-contact IR spectroscopy of hydrocarbon lubricants. Tribol. Lett. 19(4), 289 (2005)CrossRefGoogle Scholar
  6. 6.
    G. Socrates, Infrared and Raman Characteristic Group Frequencies, Table and Charts, 3rd edn. (Wiley, New York, 2004)Google Scholar
  7. 7.
    K. Takiwatari, H. Nanao, S. Mori, Effect of high pressure on molecular interaction between oleic acid and base oils at elastohydrodynamic lubrication contact. Lubr. Sci. 22, 89 (2010)CrossRefGoogle Scholar
  8. 8.
    K. Takiwatari, H. Nanao, E. Suzuki, S. Mori, Stabilization of hydrogen bonding in polypropylene glycol at EHL contact region. Lubr. Sci. 22(9), 367 (2010)CrossRefGoogle Scholar
  9. 9.
    Y. Hoshi, N. Shimotomai, M. Sato, S. Mori, Change of concentration of additives under EHL condition. J. Japanese Soc. Tribologists 44(9), 736 (1999)Google Scholar
  10. 10.
    K. Takiwatari, H. Nanao, I. Minami, S. Mori, The interaction between oleic acid and base oils at elastohydrodynamic lubrication. J. Japanese Soc. Tribologists 54(1), 48 (2009)Google Scholar
  11. 11.
    R.W.M. Wardle, R.C. Coy, P.M. Cann, H.A. Spikes, An ‘in lubro’ study of viscosity index improvers in end contacts. Lubr. Sci. 31(1), 45 (1990)CrossRefGoogle Scholar
  12. 12.
    K. Takiwatari, H. Nanao, Y. Hoshi, S. Mori, Molecular interaction originating from polar functional group in lubricants and its relationship with their traction property under elasthydrodynamic lubrication. Lubr. Sci. 27, 265 (2015)CrossRefGoogle Scholar
  13. 13.
    S. Mori, H. Iwata, Relationship between tribological performance of liquid crystals and their molecular structure. Tribol. Int. 29(1), 35 (1996)CrossRefGoogle Scholar
  14. 14.
    R. Lu, S. Mori, H. Tani, N. Tagawa, S. Koganezawa, Tribol. Int. 113, 36 (2017)CrossRefGoogle Scholar
  15. 15.
    F. Mangolini, A. Rossi, N.D. Spencer, Tribol. Lett. 45, 207 (2012)CrossRefGoogle Scholar
  16. 16.
    F.M. Piras, A. Rossi, N.D. Spencer, Growth of tribological films: In situ characterization based on attenuated total reflection infrared spectroscopy. Langmuir 18, 6606 (2002)CrossRefGoogle Scholar
  17. 17.
    N. Shimotomai, S. Mori, In situ observation of the lubrication film I O/W emulsion by mocro FT-IR. J. Japanese Soc. Tribologists 56(1), 47 (2011)Google Scholar
  18. 18.
    Y. Shitara, S. Yasutomi, S. Mori, Direct observation of W/O emulsion in concentrated contact by FT-IR microspectroscopy. J. Japanese Soc. Tribologists 55(10), 736 (2010)Google Scholar
  19. 19.
    Y. Hoshi, I. Minami, S. Mori, Change in concentration of water-glycol hydraulic fluid near the EHL contact region–Observation by micro FT-IR-. J. Japanese Soc. Tribologists 49(11), 878 (2004)Google Scholar
  20. 20.
    P.M. Cann, Grease lubrication of rolling element bearings—Role of the grease thickener. Lubr. Sci. 19(3), 183 (2007)CrossRefGoogle Scholar
  21. 21.
    Y. Hoshi, K. Takiwatari, H. Nanao, H. Yashiro, S. Mori, In situ observation of EHL films of greases a micro infrared spectroscopy. J. Japanese Soc. Tribologists 60(2), 153 (2015)Google Scholar
  22. 22.
    Y. Hoshi, K. Takiwatari, H. Nanao, S. Mori, In situ observation of transient responses in grease lubrication by a micro infrared spectroscopy. J. Japanese Soc. Tribologists 61(11), 784 (2016)Google Scholar
  23. 23.
    K. Takahashi, Y. Shitara, S. Mori, Direct observation of thermo-reversible gel-lubricants in EHL by FT-IR micro-spectroscopy. Tribol. Online 3(2), 131 (2008)CrossRefGoogle Scholar
  24. 24.
    K. Takiwatari, Y. Hoshi, H. Nanao, T. Hojo, S. Mori, In situ observation of lubricant film of semi-solid lubricants at EHL contact using micro-FTIR. Tribol. Online 11(2), 346 (2016)CrossRefGoogle Scholar
  25. 25.
    T. Ichihashi, M. Kudo, S. Mori, Relation between the friction characteristics of wet clutches and the concentration of additives obtained by in-situ observation of oil film. J. Japanese Soc. Tribologists 58(8), 581 (2013)Google Scholar
  26. 26.
    Y. Hoshi, K. Takiwatari, H. Nanao, H. Yashiro, M. Wada, H. Furukawa, S. Mori, In situ observation of hydrogel frictional interface by a micro FTIR-ATR spectroscopy. J. Japanese Soc. Tribologists 60(1), 68 (2015)Google Scholar
  27. 27.
    H. Nanao, Y. Hoshi, T. Shizuku, K. Takiwatari, S. Mori, Direct observation of lubricant components between wire and diamond die for wire drawing with a micro-FTIR. Tribol. Lett. 60(1), 12 (2015)CrossRefGoogle Scholar
  28. 28.
    Y. Hoshi, H. Nanao, K. Takiwatari, S. Mori, T. Shizuku, In situ observation of lubricant film in a diamond die for wire drawing by micro-FTIR. Tribol. Online 11(2), 88 (2016)CrossRefGoogle Scholar
  29. 29.
    M. Osawa, In-situ surface-enhanced infrared spectroscopy of the electrode/solution interface, in Electrochemical Science and Engineering, ed. by R.C. Alkire, D.M. Kolb, J. Lipkowski, P.N. Ross, p. 269 (2006)CrossRefGoogle Scholar
  30. 30.
    C.U. Amanda Cheong, P.C. Stair, In situ measurements of lubricant temperature and pressure at a sliding contact. J. Phys. Chem. 111, 11314 (2007)Google Scholar
  31. 31.
    S. Zhang, Y. Liu, J. Luo, In situ observation of the molecular ordering in the lubricating contact area. J. Appl. Phys. 165, 014302 (2014)CrossRefGoogle Scholar
  32. 32.
    H. Okubo, S. Sasaki, In situ Raman observation of structural transformation of diamond-like carbon films lubricated with MoDTC solution: Mechanism of wear acceleration of DLC films lubricated with MoDTC solution. Tribol. Int. 113, 399 (2017)CrossRefGoogle Scholar
  33. 33.
    G.A. Somorjai, K.C. Chou, M. Yang, Sum frequency generation vibrational spectroscopy characterization of surface monolayers: Catalytic reaction intermediates and polymer surfaces. J. Surf. Sci. Nanotech. 2, 106 (2004)CrossRefGoogle Scholar
  34. 34.
    D.H. Gracias, D. Zhang, Y.R. Chen, G.A. Somorjai, Surface chemistry-mechanical property relationship of low density polyethylene: IR+visible sum frequency generation spectroscopy and atomic force microscopy study. Tribol. Lett. 4, 231 (1998)CrossRefGoogle Scholar
  35. 35.
    S. Watanabe, M. Nakano, K. Miyake, S. Sasaki, Analysis of the interfacial molecular behavior of n-dodecane containing stearic acid under lubricating conditions by sum frequency generation spectroscopy. Langmuir 32, 13649 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Department of Chemical Engineering, Faculty of EngineeringIwate UniversityMoriokaJapan

Personalised recommendations