Near Edge X-Ray Absorption Fine Structure Spectroscopy: A Powerful Tool for Investigating the Surface Structure and Chemistry of Solid Lubricants

  • Filippo MangoliniEmail author
  • J. Brandon McClimon
Part of the Microtechnology and MEMS book series (MEMS)


Synchrotron-based spectroscopic techniques have been critical tools for developing a better understanding of the structure and properties of materials and material surfaces as well as their evolution in response to energetics inputs, such as mechanical strains present in tribological contacts. Among these techniques, near edge X-ray absorption fine structure (NEXAFS) spectroscopy is one of the most powerful tools thanks to its elemental specificity, surface sensitivity, and ability to provide important information about local bonding configurations, such as hybridization, chemical states, and bond orientations. In addition, when coupled with imaging methods like photoemission electron microscopy and magnetically-guided imaging, NEXAFS spectroscopy enables chemical imaging of materials with high spatial resolution. This capability can be critical when investigating materials after tribological experiments, where chemical changes and structural transformations occur in the first few atomic layers and spatial inhomogeneities can be present across small length scales. The present contribution first describes the principles of NEXAFS spectroscopy, followed by experimental methods for the acquisition and processing of NEXAFS data. Finally, the potential of this analytical method for fundamental and applied research in tribology is demonstrated by discussing case studies in the area of solid lubricating carbon-based thin films.



This material is based upon work supported by the National Science Foundation under Grant No. DMR-1107642 and by the Agence Nationale de la Recherche under grant No. ANR-11-NS09-01 through the Materials World Network program. F.M. acknowledges support from The University of Texas at Austin Startup Funding, the Marie Curie International Outgoing Fellowship for Career Development within the 7th European Community Framework Program under contract no. PIOF-GA-2012-328776 and the Marie Skłodowska-Curie Individual Fellowship within the European Union’s Horizon 2020 Program under contract no. 706289. The authors acknowledge support from the Advanced Storage Technology Consortium ASTC (grant 2011-012). The authors would like to thank Dr. C. Jaye and Dr. D. A. Fischer for the kind assistance with the NEXAFS measurements at the National Synchrotron Light Source. Use of the National Synchrotron Light Source, Brookhaven National Laboratory, was supported by the US Department of Energy, Office of Science, and Office of Basic Energy Sciences, under Contract No. DE-AC02-98CH10886. The authors would like to acknowledge Prof. R. W. Carpick (University of Pennsylvania, Philadelphia, USA) for fruitful discussions, valuable suggestions, and guidance. Finally, the authors would also like to thank Dr. K. D. Koshigan (Ecole Centrale de Lyon, Ecully-Cedex, France) and Dr. J. Fontaine (Ecole Centrale de Lyon, Ecully-Cedex, France) for performing tribological experiments on a-C:H:Si:O.


  1. 1.
    W.G. Sawyer, K.J. Wahl, Accessing inaccessible interfaces. In Situ Approaches Mater. Tribol. MRS Bull. 33, 1145–1150 (2008)Google Scholar
  2. 2.
    W.G. Sawyer, N. Argibay, D.L. Burris, B.A. Krick, Mechanistic studies in friction and wear of bulk materials. Annu. Rev. Mater. Res. 44(1), 395–427 (2014)CrossRefGoogle Scholar
  3. 3.
    C. Donnet, in Problem-Solving Methods in Tribology with Surface-Specific Techniques, ed. by J.C. Rivière, S. Myhra. Handbook of Surface and Interface Analysis: Methods and Problem-Solving, 2nd edn. (CRC Press, Taylor & Francis Group: Boca Raton, FL, 2009), pp. 351–388Google Scholar
  4. 4.
    S. Mobilio, F. Boscherini, C. Meneghini (eds.), Synchrotron Radiation: Basics, Methods and Applications. Springer (2015)Google Scholar
  5. 5.
    J. Stöhr, NEXAFS Spectroscopy. Springer (1992)Google Scholar
  6. 6.
    A. Balerna, S. Mobilio, in Introduction to Synchrotron Radiation, ed. by S. Mobilio, F. Boscherini, C. Meneghini. Synchrotron Radiation: Basics, Methods and Applications (Springer, Berlin Heidelberg, 2015), pp. 3–28Google Scholar
  7. 7.
    B.K. Agarwal, X-ray Spectroscopy. Springer (1991)Google Scholar
  8. 8.
    D.C. Koningsberger, R. Prins, X-ray Absorption: Principles, Applications, Techniques of EXAFS, SEXAFS, and XANES (Wiley, New York, 1988)Google Scholar
  9. 9.
    P. Fornasini, in Introduction to X-Ray Absorption Spectroscopy, ed. by S. Mobilio, F. Boscherini, C. Meneghini. Synchrotron Radiation: Basics, Methods and Applications (Springer, Berlin, Heidelberg, 2015), pp. 181–211Google Scholar
  10. 10.
    G. Bunker, Introduction to XAFS: A Practical Guide to X-ray Absorption Fine Structure Spectroscopy (Cambridge University Press, Cambridge, UK; New York, 2010)CrossRefGoogle Scholar
  11. 11.
    P.A. Lee, G. Beni, New method for the calculation of atomic phase shifts: application to extended X-ray absorption fine structure (EXAFS) in molecules and crystals. Phys. Rev. B 15(6), 2862–2883 (1977)CrossRefGoogle Scholar
  12. 12.
    S. Gurman, Interpretation of EXAFS data. J. Synchrotron Radiat. 2(1), 56–63 (1995)CrossRefGoogle Scholar
  13. 13.
    B.K. Teo, EXAFS: Basic Principles and Data Analysis. Springer (1986)Google Scholar
  14. 14.
    S. Anders, H.A. Padmore, R.M. Duarte, T. Renner, T. Stammler, A. Scholl et al., Photoemission electron microscope for the study of magnetic materials. Rev. Sci. Instrum. 70(10), 3973–3981 (1999)CrossRefGoogle Scholar
  15. 15.
    E. Bauer, M. Mundschau, W. Swiech, W. Telieps, Surface studies by low-energy electron microscopy (LEEM) and conventional UV photoemission electron microscopy (PEEM). Ultramicroscopy 31(1), 49–57 (1989)CrossRefGoogle Scholar
  16. 16.
    W. Engel, M.E. Kordesch, H.H. Rotermund, S. Kubala, A. von Oertzen, A UHV-compatible photoelectron emission microscope for applications in surface science. Ultramicroscopy 36(1–3), 148–153 (1991)CrossRefGoogle Scholar
  17. 17.
    O. Renault, N. Barrett, A. Bailly, L.F. Zagonel, D. Mariolle, J.C. Cezar et al., Energy-filtered XPEEM with NanoESCA using synchrotron and laboratory X-ray sources: principles and first demonstrated results. Surf. Sci. 601(20), 4727–4732 (2007)CrossRefGoogle Scholar
  18. 18.
    A. Konicek, C. Jaye, M. Hamilton, W. Sawyer, D. Fischer, R. Carpick, Near-edge X-ray absorption fine structure imaging of spherical and flat counterfaces of ultrananocrystalline diamond tribological contacts: a correlation of surface chemistry and friction. Tribol. Lett. 44(1), 99–106 (2011)CrossRefGoogle Scholar
  19. 19.
    M. Nicholls, M.N. Najman, Z. Zhang, M. Kasrai, P.R. Norton, P.U.P.A. Gilbert, The contribution of XANES spectroscopy to tribology. Can. J. Chem. 85(10), 816–830 (2007)CrossRefGoogle Scholar
  20. 20.
    A.R. Konicek, D.S. Grierson, P.U.P.A. Gilbert, W.G. Sawyer, A.V. Sumant, R.W. Carpick, Origin of ultralow friction and wear in ultrananocrystalline diamond. Phys. Rev. Lett. 100(23), 235502 (2008)CrossRefGoogle Scholar
  21. 21.
    R. Lindsay, G. Thornton, Structure of atomic and molecular adsorbates on Low-Miller-Index ZnO surfaces using X-ray absorption spectroscopy. Top. Catal. 18(1–2), 15–19 (2002)CrossRefGoogle Scholar
  22. 22.
    M. Bauer, C. Gastl, X-Ray absorption in homogeneous catalysis research: the iron-catalyzed Michael addition reaction by XAS, RIXS and multi-dimensional spectroscopy. Phys. Chem. Chem. Phys. 12(21), 5575–5584 (2010)CrossRefGoogle Scholar
  23. 23.
    D.E. Ramaker, D.C. Koningsberger, The atomic AXAFS and Δμ XANES techniques as applied to heterogeneous catalysis and electrocatalysis. Phys. Chem. Chem. Phys. 12(21), 5514–5534 (2010)CrossRefGoogle Scholar
  24. 24.
    J.B. MacNaughton, L.-A. Naslund, T. Anniyev, H. Ogasawara, A. Nilsson, Peroxide-like intermediate observed at hydrogen rich condition on Pt(111) after interaction with oxygen. Phys. Chem. Chem. Phys. 12(21), 5712–5716 (2010)CrossRefGoogle Scholar
  25. 25.
    T. Anniyev, H. Ogasawara, M.P. Ljungberg, K.T. Wikfeldt, J.B. MacNaughton, L.-A. Naslund et al., Complementarity between high-energy photoelectron and L-edge spectroscopy for probing the electronic structure of 5d transition metal catalysts. Phys. Chem. Chem. Phys. 12(21), 5694–5700 (2010)CrossRefGoogle Scholar
  26. 26.
    J. Genzer, E.J. Kramer, D.A. Fischer, Accounting for Auger yield energy loss for improved determination of molecular orientation using soft x-ray absorption spectroscopy. J. Appl. Phys. 92(12), 7070–7079 (2002)CrossRefGoogle Scholar
  27. 27.
    M. Gliboff, L. Sang, K.M. Knesting, M.C. Schalnat, A. Mudalige, E.L. Ratcliff et al., Orientation of phenylphosphonic acid self-assembled monolayers on a transparent conductive oxide: a combined NEXAFS, PM-IRRAS, and DFT study. Langmuir 29(7), 2166–2174 (2013)CrossRefGoogle Scholar
  28. 28.
    F. Cheng, L.J. Gamble, D.G. Castner, XPS, TOF-SIMS, NEXAFS, and SPR characterization of nitrilotriacetic acid-terminated self-assembled monolayers for controllable immobilization of proteins. Anal. Chem. 80(7), 2564–2573 (2008)CrossRefGoogle Scholar
  29. 29.
    S. Turgman-Cohen, D.A. Fischer, P.K. Kilpatrick, J. Genzer, Asphaltene adsorption onto self-assembled monolayers of alkyltrichlorosilanes of varying chain length. ACS Appl. Mater. Interfaces 1(6), 1347–1357 (2009)CrossRefGoogle Scholar
  30. 30.
    T. Hemraj-Benny, S. Banerjee, S. Sambasivan, M. Balasubramanian, D.A. Fischer, G. Eres et al., Near-edge X-ray absorption fine structure spectroscopy as a tool for investigating nanomaterials. Small 2(1), 26–35 (2006)CrossRefGoogle Scholar
  31. 31.
    A.D. Winter, E. Larios, F.M. Alamgir, C. Jaye, D. Fischer, E.M. Campo, Near-edge X-ray absorption fine structure studies of electrospun poly(dimethylsiloxane)/poly(methyl methacrylate)/multiwall carbon nanotube composites. Langmuir 29(51), 15822–15830 (2013)CrossRefGoogle Scholar
  32. 32.
    T. Breuer, G. Witte, Diffusion-controlled growth of molecular heterostructures: fabrication of two-, one-, and zero-dimensional C60 nanostructures on pentacene substrates. ACS Appl. Mater. Interfaces 5(19), 9740–9745 (2013)CrossRefGoogle Scholar
  33. 33.
    H.-J. Lee, K.-S. Lee, J.-M. Cho, T.-S. Lee, I. Kim, D.S. Jeong et al., Novel aspect in grain size control of nanocrystalline diamond film for thin film waveguide mode resonance sensor application. ACS Appl. Mater. Interfaces 5(22), 11631–11640 (2013)CrossRefGoogle Scholar
  34. 34.
    Y.S. Li, Y. Tang, Q. Yang, J. Maley, R. Sammynaiken, T. Regier et al., Ultrathin W–Al dual interlayer approach to depositing smooth and adherent nanocrystalline diamond films on stainless steel. ACS Appl. Mater. Interfaces 2(2), 335–338 (2010)CrossRefGoogle Scholar
  35. 35.
    K.J. Sankaran, Y.-F. Lin, W.-B. Jian, H.-C. Chen, K. Panda, B. Sundaravel et al., Structural and electrical properties of conducting diamond nanowires. ACS Appl. Mater. Interfaces 5(4), 1294–1301 (2013)CrossRefGoogle Scholar
  36. 36.
    A. Saravanan, B.-R. Huang, K.J. Sankaran, S. Kunuku, C.-L. Dong, K.-C. Leou et al., Bias-enhanced nucleation and growth processes for ultrananocrystalline diamond films in Ar/CH4 plasma and their enhanced plasma illumination properties. ACS Appl. Mater. Interfaces 6(13), 10566–10575 (2014)CrossRefGoogle Scholar
  37. 37.
    W.S. Yeap, X. Liu, D. Bevk, A. Pasquarelli, L. Lutsen, M. Fahlman et al., Functionalization of boron-doped nanocrystalline diamond with N3 dye molecules. ACS Appl. Mater. Interfaces 6(13), 10322–10329 (2014)CrossRefGoogle Scholar
  38. 38.
    S. Zhong, J.Q. Zhong, H.Y. Mao, R. Wang, Y. Wang, D.C. Qi et al., CVD graphene as interfacial layer to engineer the organic donor-acceptor heterojunction interface properties. ACS Appl. Mater. Interfaces 4(6), 3134–3140 (2012)CrossRefGoogle Scholar
  39. 39.
    J. Kikuma, B.P. Tonner, XANES spectra of a variety of widely used organic polymers at the C K-edge. J. Electron Spectrosc. Relat. Phenom. 82(1–2), 53–60 (1996)CrossRefGoogle Scholar
  40. 40.
    B. Watts, S. Swaraj, D. Nordlund, J. Luning, H. Ade, Calibrated NEXAFS spectra of common conjugated polymers. J. Chem. Phys. 134(2), 024702 (2011)CrossRefGoogle Scholar
  41. 41.
    H. Ade, A.P. Hitchcock, NEXAFS microscopy and resonant scattering: composition and orientation probed in real and reciprocal space. Polymer 49(3), 643–675 (2008)CrossRefGoogle Scholar
  42. 42.
    D. Park, J.A. Finlay, R.J. Ward, C.J. Weinman, S. Krishnan, M. Paik et al., Antimicrobial behavior of semifluorinated-quaternized triblock copolymers against airborne and marine microorganisms. ACS Appl. Mater. Interfaces 2(3), 703–711 (2010)CrossRefGoogle Scholar
  43. 43.
    H.S. Sundaram, Y. Cho, M.D. Dimitriou, J.A. Finlay, G. Cone, S. Williams et al., Fluorinated amphiphilic polymers and their blends for fouling-release applications: the benefits of a triblock copolymer surface. ACS Appl. Mater. Interfaces 3(9), 3366–3374 (2011)CrossRefGoogle Scholar
  44. 44.
    A.F. Tillack, K.M. Noone, B.A. MacLeod, D. Nordlund, K.P. Nagle, J.A. Bradley et al., Surface characterization of polythiophene: fullerene blends on different electrodes using near edge X-ray absorption fine structure. ACS Appl. Mater. Interfaces 3(3), 726–732 (2011)CrossRefGoogle Scholar
  45. 45.
    S.P. Cramer, T.K. Eccles, F.W. Kutzler, K.O. Hodgson, L.E. Mortenson, Molybdenum x-ray absorption edge spectra. The chemical state of molybdenum in nitrogenase. J. Am. Chem. Soc. 98(5), 1287–1288 (1976)CrossRefGoogle Scholar
  46. 46.
    G. Meitzner, G.H. Via, F.W. Lytle, J.H. Sinfelt, Analysis of x-ray absorption edge data on metal catalysts. J. Phys. Chem. 96(12), 4960–4964 (1992)CrossRefGoogle Scholar
  47. 47.
    D.H. Pearson, C.C. Ahn, B. Fultz, White lines and d-electron occupancies for the 3d and 4d transition metals. Phys. Rev. B 47(14), 8471–8478 (1993)CrossRefGoogle Scholar
  48. 48.
    D. Hübner, F. Holch, M.L.M. Rocco, K.C. Prince, S. Stranges, A. Schöll et al., Isotope effects in high-resolution NEXAFS spectra of naphthalene. Chem. Phys. Lett. 415(1–3), 188–192 (2005)CrossRefGoogle Scholar
  49. 49.
    A.P. Hitchcock, C.E. Brion, K-shell excitation of HF and F2 studied by electron energy-loss spectroscopy. J. Phys. B: At. Mol. Phys. 14(22), 4399–4413 (1981)CrossRefGoogle Scholar
  50. 50.
    F. Sette, J. Stöhr, A.P. Hitchcock, Determination of intramolecular bond lengths in gas phase molecules from K shell shape resonances. J. Chem. Phys. 81(11), 4906–4914 (1984)CrossRefGoogle Scholar
  51. 51.
    J.S. Stevens, A. Gainar, E. Suljoti, J. Xiao, R. Golnak, E.F. Aziz et al., Chemical speciation and bond lengths of organic solutes by core-level spectroscopy: ph and solvent influence on p-aminobenzoic acid. Chemistry 21(19), 7256–7263 (2015)CrossRefGoogle Scholar
  52. 52.
    J. Stöhr, F. Sette, A.L. Johnson, Near-edge X-ray-absorption fine-structure studies of chemisorbed hydrocarbons: bond lengths with a ruler. Phys. Rev. Lett. 53(17), 1684–1687 (1984)CrossRefGoogle Scholar
  53. 53.
    A. Gainar, J.S. Stevens, C. Jaye, D.A. Fischer, S.L. Schroeder, NEXAFS sensitivity to bond lengths in complex molecular materials: a study of crystalline saccharides. J. Phys. Chem. B 119(45), 14373–14381 (2015)CrossRefGoogle Scholar
  54. 54.
    V.L. Shneerson, D.K. Saldin, W.T. Tysoe, On the dependence with bond lengths of the observed energies of NEXAFS resonances of diatomic molecules. Surf. Sci. 375(2–3), 340–352 (1997)CrossRefGoogle Scholar
  55. 55.
    N. Haack, G. Ceballos, H. Wende, K. Baberschke, D. Arvanitis, A.L. Ankudinov et al., Shape resonances of oriented molecules: ab initio theory and experiment on hydrocarbon molecules. Phys. Rev. Lett. 84(4), 614–617 (2000)CrossRefGoogle Scholar
  56. 56.
    D. Arvanitis, N. Haack, G. Ceballos, H. Wende, K. Baberschke, A.L. Ankudinov et al., Shape resonances of oriented molecules. J. Electron Spectrosc. Relat. Phenom. 113(1), 57–65 (2000)CrossRefGoogle Scholar
  57. 57.
    B. Kempgens, H.M. Köppe, A. Kivimäki, M. Neeb, K. Maier, U. Hergenhahn et al., On the correct identification of shape resonances in NEXAFS. Surf. Sci. 425(1), L376–L380 (1999)CrossRefGoogle Scholar
  58. 58.
    M.N. Piancastelli, D.W. Lindle, T.A. Ferrett, D.A. Shirley, Reply to the ‘‘Comment on ‘The relationship between shape resonances and bond lengths’’’. J. Chem. Phys. 87(5), 3255 (1987)CrossRefGoogle Scholar
  59. 59.
    M.N. Piancastelli, D.W. Lindle, T.A. Ferrett, D.A. Shirley, The relationship between shape resonances and bond lengths. J. Chem. Phys. 86(5), 2765–2771 (1987)CrossRefGoogle Scholar
  60. 60.
    K. Weiss, P.S. Bagus, C. Wöll, Rydberg transitions in X-ray absorption spectroscopy of alkanes: the importance of matrix effects. J. Chem. Phys. 111(15), 6834–6845 (1999)CrossRefGoogle Scholar
  61. 61.
    S.G. Urquhart, R. Gillies, Rydberg-valence mixing in the carbon 1 s near-edge X-ray absorption fine structure spectra of gaseous alkanes. J. Phys. Chem. A 109(10), 2151–2159 (2005)CrossRefGoogle Scholar
  62. 62.
    D. Briggs, J.T. Grant (eds.), Surface Analysis by Auger and X-Ray Photoelectron Spectroscopy (IM Publications, Chichester (UK), 2003)Google Scholar
  63. 63.
    D. Briggs, M.P. Seah (eds.), Practical Surface Analysis (Wiley, New York, 1990)Google Scholar
  64. 64.
    T. Maruyama, Y. Ishiguro, S. Nartitsuka, W. Norimatsu, M. Kusunoki, K. Amemiya et al., Near-edge X-ray absorption fine structure study of vertically aligned carbon nanotubes grown by the surface decomposition of SiC. Jpn. J. Appl. Phys. 51(Copyright (c) 2012 The Japan Society of Applied Physics), 055102CrossRefGoogle Scholar
  65. 65.
    T. Maruyama, S. Sakakibara, S. Naritsuka, K. Amemiya, Initial stage of carbon nanotube formation process by surface decomposition of SiC: STM and NEXAFS study. Diam. Relat. Mater. 20(10), 1325–1328 (2011)CrossRefGoogle Scholar
  66. 66.
    G. Margaritondo, in Characteristics and Properties of Synchrotron Radiation, ed. by S. Mobilio, F. Boscherini, C. Meneghini. Synchrotron Radiation: Basics, Methods and Applications (Springer, Berlin, Heidelberg, 2015), pp. 29–63Google Scholar
  67. 67.
    G. Aquilanti, L. Vaccari, J.R. Plaisier, A. Goldoni, in Instrumentation at Synchrotron Radiation Beamlines, S. Mobilio, F. Boscherini, C. Meneghini. Synchrotron Radiation: Basics, Methods and Applications (Springer, Berlin, Heidelberg, 2015), pp. 65–104Google Scholar
  68. 68.
    D. Attwood, Soft X-Rays and Extreme Ultraviolet Radiation: Principles and Applications (2007)Google Scholar
  69. 69.
    A. Scholl, H. Ohldag, F. Nolting, J. Stöhr, H.A. Padmore, X-ray photoemission electron microscopy, a tool for the investigation of complex magnetic structures (invited). Rev. Sci. Instrum. 73(3), 1362 (2002)CrossRefGoogle Scholar
  70. 70.
    T. Schmidt, A. Sala, H. Marchetto, E. Umbach, H.J. Freund, First experimental proof for aberration correction in XPEEM: resolution, transmission enhancement, and limitation by space charge effects. Ultramicroscopy 126, 23–32 (2013)CrossRefGoogle Scholar
  71. 71.
    E. Bauer, Surface Microscopy with Low Energy Electrons (Springer, New York, 2014)CrossRefGoogle Scholar
  72. 72.
    B.H. Frazer, M. Girasole, L.M. Wiese, T. Franz, G. De Stasio, Spectromicroscope for the Photoelectron imaging of nanostructures with X-rays (SPHINX): performance in biology, medicine and geology. Ultramicroscopy 99(2–3), 87–94 (2004)CrossRefGoogle Scholar
  73. 73.
    J. Feng, A. Scholl, in Photoemission Electron Microscopy (PEEM), ed. by P.W. Hawkes, J.C.H. Spence. Science of Microscopy (Springer, New York, NY, 2007), pp. 657–695Google Scholar
  74. 74.
    G. De Stasio, M. Capozi, G.F. Lorusso, P.A. Baudat, T.C. Droubay, P. Perfetti et al., MEPHISTO: performance tests of a novel synchrotron imaging photoelectron spectromicroscope. Rev. Sci. Instrum. 69(5), 2062–2066 (1998)CrossRefGoogle Scholar
  75. 75.
    G. De Stasio, L. Perfetti, B. Gilbert, O. Fauchoux, M. Capozi, P. Perfetti et al., MEPHISTO spectromicroscope reaches 20 nm lateral resolution. Rev. Sci. Instrum. 70(3), 1740–1742 (1999)CrossRefGoogle Scholar
  76. 76.
    B.P. Tonner, G.R. Harp, Photoelectron microscopy with synchrotron radiation. Rev. Sci. Instrum. 59(6), 853–858 (1988)CrossRefGoogle Scholar
  77. 77.
    A.V. Sumant, D.S. Grierson, J.E. Gerbi, J. Birrell, U.D. Lanke, O. Auciello et al., Toward the ultimate tribological interface: surface chemistry and nanotribology of ultrananocrystalline diamond. Adv. Mater. 17(8), 1039–1045 (2005)CrossRefGoogle Scholar
  78. 78.
    S. Anders, T. Stammler, W. Fong, D.B. Bogy, C.S. Bhatia, J. Stöhr, Investigation of slider surfaces after wear using photoemission electron microscopy. J. Vac. Sci. Technol. A: Vac. Surf. Films 17(5), 2731–2736 (1999)CrossRefGoogle Scholar
  79. 79.
    S. Anders, T. Stammler, W. Fong, C.-Y. Chen, D.B. Bogy, C.S. Bhatia et al., Study of tribochemical processes on hard disks using photoemission electron microscopy. J. Tribol. 121(4), 961–967 (1999)CrossRefGoogle Scholar
  80. 80.
    A.V. Sumant, P.U.P.A. Gilbert, D.S. Grierson, A.R. Konicek, M. Abrecht, J.E. Butler et al., Surface composition, bonding, and morphology in the nucleation and growth of ultra-thin, high quality nanocrystalline diamond films. Diam. Relat. Mater. 16(4–7), 718–724 (2007)CrossRefGoogle Scholar
  81. 81.
    D.S. Grierson, A.V. Sumant, A.R. Konicek, M. Abrecht, J. Birrell, O. Auciello et al., Tribochemistry and material transfer for the ultrananocrystalline diamond-silicon nitride interface revealed by x-ray photoelectron emission spectromicroscopy. J. Vac. Sci. Technol. B: Microelectron. Nanometer Struct. 25(5), 1700–1705 (2007)CrossRefGoogle Scholar
  82. 82.
    A.R. Konicek, D.S. Grierson, A.V. Sumant, T.A. Friedmann, J.P. Sullivan, P.U.P.A. Gilbert et al., Influence of surface passivation on the friction and wear behavior of ultrananocrystalline diamond and tetrahedral amorphous carbon thin films. Phys. Rev. B 85(15), 155448 (2012)CrossRefGoogle Scholar
  83. 83.
    C.M. Schneider, G. Schönhense, Investigating surface magnetism by means of photoexcitation electron emission microscopy. Rep. Prog. Phys. 65(12), 1785 (2002)CrossRefGoogle Scholar
  84. 84.
    M.R. Freeman, B.C. Choi, Advances in magnetic microscopy. Science 294(5546), 1484 (2001)CrossRefGoogle Scholar
  85. 85.
    F. Nolting, A. Scholl, J. Stöhr, J.W. Seo, J. Fompeyrine, H. Siegwart et al., Direct observation of the alignment of ferromagnetic spins by antiferromagnetic spins. Nature 405(6788), 767–769 (2000)CrossRefGoogle Scholar
  86. 86.
    M. Kim, M. Bertram, M. Pollmann, Oertzen Av, A.S. Mikhailov, H.H. Rotermund et al., Controlling chemical turbulence by global delayed feedback: pattern formation in catalytic CO oxidation on Pt(110). Science 292(5520), 1357 (2001)CrossRefGoogle Scholar
  87. 87.
    S. Aggarwal, A.P. Monga, S.R. Perusse, R. Ramesh, V. Ballarotto, E.D. Williams et al., Spontaneous ordering of oxide nanostructures. Science 287(5461), 2235 (2000)CrossRefGoogle Scholar
  88. 88.
    F.-J. Meyer zu Heringdorf, M.C. Reuter, R.M. Tromp, Growth dynamics of pentacene thin films. Nature 412(6846), 517–520 (2001)CrossRefGoogle Scholar
  89. 89.
    C. Morin, H. Ikeura-Sekiguchi, T. Tyliszczak, R. Cornelius, J.L. Brash, A.P. Hitchcock et al., X-ray spectromicroscopy of immiscible polymer blends: polystyrene–poly(methyl methacrylate). J. Electron Spectrosc. Relat. Phenom. 121(1–3), 203–224 (2001)CrossRefGoogle Scholar
  90. 90.
    H. Ade, D.A. Winesett, A.P. Smith, S. Anders, T. Stammler, C. Heske et al., Bulk and surface characterization of a dewetting thin film polymer bilayer. Appl. Phys. Lett. 73(25), 3775–3777 (1998)CrossRefGoogle Scholar
  91. 91.
    G. De Stasio, P. Casalbore, R. Pallini, B. Gilbert, F. Sanità, M.T. Ciotti et al., Gadolinium in human glioblastoma cells for gadolinium neutron capture therapy. Can. Res. 61(10), 4272 (2001)Google Scholar
  92. 92.
    G. De Stasio, B.H. Frazer, B. Gilbert, K.L. Richter, J.W. Valley, Compensation of charging in X-PEEM: a successful test on mineral inclusions in 4.4 Ga old zircon. Ultramicroscopy 98(1), 57–62 (2003)CrossRefGoogle Scholar
  93. 93.
    M. Labrenz, G.K. Druschel, T. Thomsen-Ebert, B. Gilbert, S.A. Welch, K.M. Kemner et al., Formation of sphalerite (ZnS) deposits in natural biofilms of sulfate-reducing bacteria. Science 290(5497), 1744 (2000)CrossRefGoogle Scholar
  94. 94.
    B. Gilbert, R. Andres, P. Perfetti, G. Margaritondo, G. Rempfer, G. De Stasio, Charging phenomena in PEEM imaging and spectroscopy. Ultramicroscopy 83(1–2), 129–139 (2000)CrossRefGoogle Scholar
  95. 95.
    A. Locatelli, E. Bauer, Recent advances in chemical and magnetic imaging of surfaces and interfaces by XPEEM. J. Phys.: Condens. Matter 20(9), 093002 (2008)Google Scholar
  96. 96.
    C. Wiemann, M. Patt, I.P. Krug, N.B. Weber, M. Escher, M. Merkel et al., A new nanospectroscopy tool with synchrotron radiation: NanoESCA@Elettra. e-J. Surf. Sci. Nanotechnol. 9, 395–399 (2011)CrossRefGoogle Scholar
  97. 97.
    J.E. Baio, C. Jaye, D.A. Fischer, T. Weidner, Multiplexed orientation and structure analysis by imaging near-edge X-ray absorption fine structure (MOSAIX) for combinatorial surface science. Anal. Chem. 85(9), 4307–4310 (2013)CrossRefGoogle Scholar
  98. 98.
    K.D. Koshigan, F. Mangolini, J.B. McClimon, B. Vacher, S. Bec, R.W. Carpick et al., Understanding the hydrogen and oxygen gas pressure dependence of the tribological properties of silicon oxide–doped hydrogenated amorphous carbon coatings. Carbon 93, 851–860 (2015)CrossRefGoogle Scholar
  99. 99.
    F. Mangolini, J.B. McClimon, F. Rose, R.W. Carpick, Accounting for nanometer-thick adventitious carbon contamination in X-ray absorption spectra of carbon-based materials. Anal. Chem. 86(24), 12258–12265 (2014)CrossRefGoogle Scholar
  100. 100.
    A. Schöll, Y. Zou, T. Schmidt, R. Fink, E. Umbach, Energy calibration and intensity normalization in high-resolution NEXAFS spectroscopy. J. Electron Spectrosc. Relat. Phenom. 129(1), 1–8 (2003)CrossRefGoogle Scholar
  101. 101.
    B. Watts, H. Ade, A simple method for determining linear polarization and energy calibration of focused soft X-ray beams. J. Electron Spectrosc. Relat. Phenom. 162(2), 49–55 (2008)CrossRefGoogle Scholar
  102. 102.
    B. Watts, L. Thomsen, P.C. Dastoor, Methods in carbon K-edge NEXAFS: experiment and analysis. J. Electron Spectrosc. Relat. Phenom. 151(2), 105–120 (2006)CrossRefGoogle Scholar
  103. 103.
    M. Olla, G. Navarra, B. Elsener, A. Rossi, Nondestructive in-depth composition profile of oxy-hydroxide nanolayers on iron surfaces from ARXPS measurement. Surf. Interface Anal. 38(5), 964–974 (2006)CrossRefGoogle Scholar
  104. 104.
    M.A. Scorciapino, G. Navarra, B. Elsener, A. Rossi, Nondestructive surface depth profiles from angle-resolved X-ray photoelectron spectroscopy data using the maximum entropy method. I. A New Protocol. J. Phys. Chem. C 113(51), 21328–21337 (2009)CrossRefGoogle Scholar
  105. 105.
    M. Seah, Ultrathin SiO2 on Si I. quantifying and removing carbonaceous contamination. J. Vac. Sci. Technol. A 21(2), 34 (2003)CrossRefGoogle Scholar
  106. 106.
    I. Ishii, A.P. Hitchcook, The oscillator strengths for C 1s and O 1s excitation of some saturated and unsaturated organic alcohols, acids and esters. J. Electron Spectrosc. Relat. Phenom. 46(1), 55–84 (1988)CrossRefGoogle Scholar
  107. 107.
    J.F. Morar, F.J. Himpsel, G. Hollinger, G. Hughes, J.L. Jordan, Observation of a C-1s core exciton in diamond. Phys. Rev. Lett. 54(17), 1960–1963 (1985)CrossRefGoogle Scholar
  108. 108.
    S.C. Ray, R.M. Erasmus, H. Tsai, M. nbsp, C. Pao et al., Hydrogenation effects of ultrananocrystalline diamond detected by X-ray absorption near edge structure and raman spectroscopy. Jpn. J. Appl. Phys. 51(Copyright (c) 2012 The Japan Society of Applied Physics), 095201CrossRefGoogle Scholar
  109. 109.
    A.V. Sumant, D.S. Grierson, J.E. Gerbi, J.A. Carlisle, O. Auciello, R.W. Carpick, Surface chemistry and bonding configuration of ultrananocrystalline diamond surfaces and their effects on nanotribological properties. Phys. Rev. B 76(23), 235429 (2007)CrossRefGoogle Scholar
  110. 110.
    J. Diaz, S. Anders, X. Zhou, E.J. Moler, S.A. Kellar, Z. Hussain, Combined near edge X-ray absorption fine structure and X-ray photoemission spectroscopies for the study of amorphous carbon thin films. J. Electron Spectrosc. Relat. Phenom. 101–103, 545–550 (1999)CrossRefGoogle Scholar
  111. 111.
    R. Gago, I. Jiménez, J.M. Albella, A. Climent-Font, D. Cáceres, I. Vergara et al., Bonding and hardness in nonhydrogenated carbon films with moderate sp3 content. J. Appl. Phys. 87(11), 8174–8180 (2000)CrossRefGoogle Scholar
  112. 112.
    D.S. Grierson, A.V. Sumant, A.R. Konicek, T.A. Friedmann, J.P. Sullivan, R.W. Carpick, Thermal stability and rehybridization of carbon bonding in tetrahedral amorphous carbon. J. Appl. Phys. 107(3), 033523–033525 (2010)CrossRefGoogle Scholar
  113. 113.
    C. Lenardi, P. Piseri, V. Briois, C.E. Bottani, A.L. Bassi, P. Milani, Near-edge x-ray absorption fine structure and Raman characterization of amorphous and nanostructured carbon films. J. Appl. Phys. 85(10), 7159–7167 (1999)CrossRefGoogle Scholar
  114. 114.
    S.C. Ray, H.M. Tsai, J.W. Chiou, B. Bose, J.C. Jan, K. Krishna et al., X-ray absorption spectroscopy (XAS) study of dip deposited a-C:H(OH) thin films. J. Phys.: Condens. Matter 16(32), 5713 (2004)Google Scholar
  115. 115.
    A. Saikubo, N. Yamada, K. Kanda, S. Matsui, T. Suzuki, K. Niihara et al., Comprehensive classification of DLC films formed by various methods using NEXAFS measurement. Diam. Relat. Mater. 17(7–10), 1743–1745 (2008)CrossRefGoogle Scholar
  116. 116.
    D. Wesner, S. Krummacher, R. Carr, T.K. Sham, M. Strongin, W. Eberhardt et al., Synchrotron-radiation studies of the transition of hydrogenated amorphous carbon to graphitic carbon. Phys. Rev. B 28(4), 2152–2156 (1983)CrossRefGoogle Scholar
  117. 117.
    J.G. Buijnsters, R. Gago, A. Redondo-Cubero, I. Jimenez, Hydrogen stability in hydrogenated amorphous carbon films with polymer-like and diamond-like structure. J. Appl. Phys. 112(9), 093502–093507 (2012)CrossRefGoogle Scholar
  118. 118.
    G. Comelli, J. Stöhr, C.J. Robinson, W. Jark, Structural studies of argon-sputtered amorphous carbon films by means of extended x-ray-absorption fine structure. Phys. Rev. B 38(11), 7511–7519 (1988)CrossRefGoogle Scholar
  119. 119.
    J. Díaz, S. Anders, X. Zhou, E.J. Moler, S.A. Kellar, Z. Hussain, Analysis of the π* and σ* bands of the x-ray absorption spectrum of amorphous carbon. Phys. Rev. B 64(12), 125204 (2001)CrossRefGoogle Scholar
  120. 120.
    J. Diaz, O.R. Monteiro, Z. Hussain, Structure of amorphous carbon from near-edge and extended x-ray absorption spectroscopy. Phys. Rev. B 76(9), 094201 (2007)CrossRefGoogle Scholar
  121. 121.
    J. Diaz, G. Paolicelli, S. Ferrer, F. Comin, Separation of the sp3 and sp2 components in the C 1s photoemission spectra of amorphous carbon films. Phys. Rev. B 54(11), 8064–8069 (1996)CrossRefGoogle Scholar
  122. 122.
    Gago, I. Jiménez, J.M. Albella, Detecting with X-ray absorption spectroscopy the modifications of the bonding structure of graphitic carbon by amorphisation, hydrogenation and nitrogenation. Surf. Sci. 482–485, Part 1: 530–536 (2001)Google Scholar
  123. 123.
    R. Gago, M. Vinnichenko, H.U. Jäger, A.Y. Belov, I. Jiménez, N. Huang et al., Evolution of sp2 networks with substrate temperature in amorphous carbon films: experiment and theory. Phys. Rev. B 72(1), 014120 (2005)CrossRefGoogle Scholar
  124. 124.
    H.-S. Jung, H.-H. Park, I.R. Mendieta, D.A. Smith, Determination of bonding structure of Si, Ge, and N incorporated amorphous carbon films by near-edge x-ray absorption fine structure and ultraviolet Raman spectroscopy. J. Appl. Phys. 96(2), 1013–1018 (2004)CrossRefGoogle Scholar
  125. 125.
    C. Lenardi, E. Barborini, V. Briois, L. Lucarelli, P. Piseri, P. Milani, NEXAFS characterization of nanostructured carbon thin-films exposed to hydrogen. Diam. Relat. Mater. 10(3–7), 1195–1200 (2001)CrossRefGoogle Scholar
  126. 126.
    C. Lenardi, M. Marino, E. Barborini, P. Piseri, P. Milani, Evaluation of hydrogen chemisorption in nanostructured carbon films by near edge X-ray absorption spectroscopy. Eur. Phys. J. B – Condens. Matter Complex Syst. 46(3), 441–447 (2005)CrossRefGoogle Scholar
  127. 127.
    O.R. Monteiro, M.-P. Delplancke-Ogletree, Investigation of non-hydrogenated DLC: Si prepared by cathodic arc. Surf. Coat. Technol. 163–164, 144–148 (2003)CrossRefGoogle Scholar
  128. 128.
    V. Palshin, R. Tittsworth, C. Fountzoulas, E. Meletis, X-ray absorption spectroscopy, simulation and modeling of Si-DLC films. J. Mater. Sci. 37(8), 1535–1539 (2002)CrossRefGoogle Scholar
  129. 129.
    B.J. Schultz, C.J. Patridge, V. Lee, C. Jaye, P.S. Lysaght, C. Smith et al., Imaging local electronic corrugations and doped regions in graphene. Nat. Commun. 2, 372 (2011)CrossRefGoogle Scholar
  130. 130.
    D. Pacilé, M. Papagno, A.F. Rodríguez, M. Grioni, L. Papagno, Ç.Ö. Girit et al., Near-edge X-ray absorption fine-structure investigation of graphene. Phys. Rev. Lett. 101(6), 066806 (2008)CrossRefGoogle Scholar
  131. 131.
    S. Banerjee, T. Hemraj-Benny, M. Balasubramanian, D.A. Fischer, J.A. Misewich, S.S. Wong, Ozonized single-walled carbon nanotubes investigated using NEXAFS spectroscopy. Chem. Commun. 7, 772–773 (2004)CrossRefGoogle Scholar
  132. 132.
    S. Banerjee, T. Hemraj-Benny, S. Sambasivan, D.A. Fischer, J.A. Misewich, S.S. Wong, Near-edge X-ray absorption fine structure investigations of order in carbon nanotube-based systems†. J. Phys. Chem. B 109(17), 8489–8495 (2005)CrossRefGoogle Scholar
  133. 133.
    D.A. Fischer, K. Efimenko, R.R. Bhat, S. Sambasivan, J. Genzer, Mapping surface chemistry and molecular orientation with combinatorial near-edge X-ray absorption fine structure spectroscopy. Macromol. Rapid Commun. 25(1), 141–149 (2004)CrossRefGoogle Scholar
  134. 134.
    F. Mangolini, F. Rose, J. Hilbert, R.W. Carpick, Thermally induced evolution of hydrogenated amorphous carbon. Appl. Phys. Lett. 103(16), 161605 (2013)CrossRefGoogle Scholar
  135. 135.
    P.E. Batson, Carbon 1s near-edge-absorption fine structure in graphite. Phys. Rev. B 48(4), 2608–2610 (1993)CrossRefGoogle Scholar
  136. 136.
    A. Wada, T. Ogaki, M. Niibe, M. Tagawa, H. Saitoh, K. Kanda et al., Local structural analysis of a-SiCx: H films formed by decomposition of tetramethylsilane in microwave discharge flow of Ar. Diam. Relat. Mater. 20(3), 364–367 (2011)CrossRefGoogle Scholar
  137. 137.
    F. Mangolini, J.B. McClimon, R.W. Carpick, Quantitative evaluation of the carbon hybridization state by near edge X-ray absorption fine structure spectroscopy. Anal. Chem. 88(5), 2817–2824 (2016)CrossRefGoogle Scholar
  138. 138.
    J. Robertson, Diamond-like amorphous carbon. Mater. Sci. Eng.: R: Rep. 37(4–6), 129–281 (2002)CrossRefGoogle Scholar
  139. 139.
    S. Osswald, G. Yushin, V. Mochalin, S.O. Kucheyev, Y. Gogotsi, Control of sp2/sp3 carbon ratio and surface chemistry of nanodiamond powders by selective oxidation in air. J. Am. Chem. Soc. 128(35), 11635–11642 (2006)CrossRefGoogle Scholar
  140. 140.
    F.L. Coffman, R. Cao, P.A. Pianetta, S. Kapoor, M. Kelly, L.J. Terminello, Near-edge X-ray absorption of carbon materials for determining bond hybridization in mixed sp2/sp3 bonded materials. Appl. Phys. Lett. 69(4), 568–570 (1996)CrossRefGoogle Scholar
  141. 141.
    F. Mangolini, J. Hilbert, J.B. McClimon, J.R. Lukes, R.W. Carpick, Thermally induced structural evolution of silicon- and oxygen-containing hydrogenated amorphous carbon: a combined spectroscopic and molecular dynamics simulation investigation. Langmuir 34(9), 2989–2995 (2018)CrossRefGoogle Scholar
  142. 142.
    F. Mangolini, B.A. Krick, T.D.B. Jacobs, S.R. Khanal, F. Streller, J.B. McClimon et al., Effect of silicon and oxygen dopants on the stability of hydrogenated amorphous carbon under harsh environmental conditions. Carbon 130, 127–136 (2018)CrossRefGoogle Scholar
  143. 143.
    A.C. Ferrari, J. Robertson, Raman spectroscopy of amorphous, nanostructured, diamond-like carbon, and nanodiamond. Philos. Trans. Royal Soc. Lond. Ser. A: Math. Phys. Eng. Sci. 2004(362), 2477–2512 (1824)Google Scholar
  144. 144.
    F. Rose, N. Wang, R. Smith, Q.-F. Xiao, H. Inaba, T. Matsumura et al., Complete characterization by Raman spectroscopy of the structural properties of thin hydrogenated diamond-like carbon films exposed to rapid thermal annealing. J. Appl. Phys. 116(12), 123516 (2014)CrossRefGoogle Scholar
  145. 145.
    A.C. Ferrari, B. Kleinsorge, G. Adamopoulos, J. Robertson, W.I. Milne, V. Stolojan et al., Determination of bonding in amorphous carbons by electron energy loss spectroscopy, Raman scattering and X-ray reflectivity. J. Non-Cryst. Solids 266269 Part 2, 765–768 (2000)CrossRefGoogle Scholar
  146. 146.
    J. Filik, P.W. May, S.R.J. Pearce, R.K. Wild, K.R. Hallam, XPS and laser Raman analysis of hydrogenated amorphous carbon films. Diam. Relat. Mater. 12(3–7), 974–978 (2003)CrossRefGoogle Scholar
  147. 147.
    S. Kaciulis, Spectroscopy of carbon: from diamond to nitride films. Surf. Interface Anal. 44(8), 1155–1161 (2012)CrossRefGoogle Scholar
  148. 148.
    A. Mezzi, S. Kaciulis, Surface investigation of carbon films: from diamond to graphite. Surf. Interface Anal. 42(6–7), 1082–1084 (2010)CrossRefGoogle Scholar
  149. 149.
    J.C. Lascovich, V. Rosato, Analysis of the electronic structure of hydrogenated amorphous carbon via Auger spectroscopy. Appl. Surf. Sci. 152(1–2), 10–18 (1999)CrossRefGoogle Scholar
  150. 150.
    S. Kaciulis, A. Mezzi, P. Calvani, D.M. Trucchi, Electron spectroscopy of the main allotropes of carbon. Surf. Interface Anal. 46(10–11), 966–969 (2014)CrossRefGoogle Scholar
  151. 151.
    B. Lesiak, J. Zemek, P. Jiricek, L. Stobinski, A. Jóźwik, The line shape analysis of electron spectroscopy spectra by the artificial intelligence methods for identification of C sp2/sp3 bonds. Phys. Status Solidi (b) 247(11–12), 2838–2842 (2010)CrossRefGoogle Scholar
  152. 152.
    G. Speranza, N. Laidani, Measurement of the relative abundance of sp2 and sp3 hybridised atoms in carbon based materials by XPS: a critical approach. Part I. Diam. Relat. Mater. 13(3), 445–450 (2004)CrossRefGoogle Scholar
  153. 153.
    J. Zemek, J. Zalman, A. Luches, XAES and XPS study of amorphous carbon nitride layers. Appl. Surf. Sci. 133(1–2), 27–32 (1998)CrossRefGoogle Scholar
  154. 154.
    Y. Mizokawa, T. Miyasato, S. Nakamura, K.M. Geib, C.W. Wilmsen, Comparison of the CKLL first-derivative auger spectra from XPS and AES using diamond, graphite SiC and diamond-like-carbon films. Surf. Sci. 182(3), 431–438 (1987)CrossRefGoogle Scholar
  155. 155.
    Y. Mizokawa, T. Miyasato, S. Nakamura, K.M. Geib, C.W. Wilmsen, The C KLL first-derivative x-ray photoelectron spectroscopy spectra as a fingerprint of the carbon state and the characterization of diamond like carbon films. J. Vac. Sci. Technol. A: Vac. Surf. Films 5(5), 2809–2813 (1987)CrossRefGoogle Scholar
  156. 156.
    S.D. Berger, D.R. McKenzie, P.J. Martin, EELS analysis of vacuum arc-deposited diamond-like films. Philos. Mag. Lett. 57(6), 285–290 (1988)CrossRefGoogle Scholar
  157. 157.
    J. Kulik, G.D. Lempert, E. Grossman, D. Marton, J.W. Rabalais, Y. Lifshitz, sp3 content of mass-selected ion-beam-deposited carbon films determined by inelastic and elastic electron scattering. Phys. Rev. B 52(22), 15812–15822 (1995)CrossRefGoogle Scholar
  158. 158.
    Y. Wang, H. Chen, R.W. Hoffman, J.C. Angus, Structural analysis of hydrogenated diamond-like carbon films from electron energy loss spectroscopy. J. Mater. Res. 5(11), 2378–2386 (1990)CrossRefGoogle Scholar
  159. 159.
    M.J. Paterson, An investigation of the role of hydrogen in ion beam deposited a-C:H. Diam. Relat. Mater. 7(6), 908–915 (1998)CrossRefGoogle Scholar
  160. 160.
    C. Donnet, J. Fontaine, F. Lefebvre, A. Grill, V. Patel, C. Jahnes, Solid state 13C and 1H nuclear magnetic resonance investigations of hydrogenated amorphous carbon. J. Appl. Phys. 85(6), 3264–3270 (1999)CrossRefGoogle Scholar
  161. 161.
    J. Peng, A. Sergiienko, F. Mangolini, P.E. Stallworth, S. Greenbaum, R.W. Carpick, Solid state magnetic resonance investigation of the thermally-induced structural evolution of silicon oxide-doped hydrogenated amorphous carbon. Carbon 105, 163–175 (2016)CrossRefGoogle Scholar
  162. 162.
    G. Kovach, A. Karacs, G. Radnoczi, H. Csorbai, L. Guczi, M. Veres et al., Modified π-states in ion-irradiated carbon. Appl. Surf. Sci. 254(9), 2790–2796 (2008)CrossRefGoogle Scholar
  163. 163.
    J.A. Leiro, M.H. Heinonen, T. Laiho, I.G. Batirev, Core-level XPS spectra of fullerene, highly oriented pyrolitic graphite, and glassy carbon. J. Electron Spectrosc. Relat. Phenom. 128(2–3), 205–213 (2003)CrossRefGoogle Scholar
  164. 164.
    R.F. Egerton, An Introduction to EELS. Electron Energy-Loss Spectroscopy in the Electron Microscope. Springer, US, pp. 1–28 (2011)CrossRefGoogle Scholar
  165. 165.
    P.J. Fallon, V.S. Veerasamy, C.A. Davis, J. Robertson, G.A.J. Amaratunga, W.I. Milne et al., Properties of filtered-ion-beam-deposited diamondlike carbon as a function of ion energy. Phys. Rev. B 48(7), 4777–4782 (1993)CrossRefGoogle Scholar
  166. 166.
    D.G. McCulloch, D.R. McKenzie, C.M. Goringe, Ab initio simulations of the structure of amorphous carbon. Phys. Rev. B 61(3), 2349–2355 (2000)CrossRefGoogle Scholar
  167. 167.
    K.E. Sohn, M.D. Dimitriou, J. Genzer, D.A. Fischer, C.J. Hawker, E.J. Kramer, Determination of the electron escape depth for NEXAFS spectroscopy. Langmuir 25(11), 6341–6348 (2009)CrossRefGoogle Scholar
  168. 168.
    S. Anders, J. Diaz, J.W. Ager Iii, R.Y. Lo, D.B. Bogy, Thermal stability of amorphous hard carbon films produced by cathodic arc deposition. Appl. Phys. Lett. 71(23), 3367–3369 (1997)CrossRefGoogle Scholar
  169. 169.
    S. Takabayashi, K. Okamoto, H. Sakaue, T. Takahagi, K. Shimada, T. Nakatani, Annealing effect on the chemical structure of diamondlike carbon. J. Appl. Phys. 104(4), 043512–043516 (2008)CrossRefGoogle Scholar
  170. 170.
    N. Wang, K. Komvopoulos, F. Rose, B. Marchon, Structural stability of hydrogenated amorphous carbon overcoats used in heat-assisted magnetic recording investigated by rapid thermal annealing. J. Appl. Phys. 113(8), 083517–083517 (2013)CrossRefGoogle Scholar
  171. 171.
    J.P. Sullivan, T. Friedmann, A. Baca, Stress relaxation and thermal evolution of film properties in amorphous carbon. J. Electron. Mater. 26(9), 1021–1029 (1997)CrossRefGoogle Scholar
  172. 172.
    A.C. Ferrari, S.E. Rodil, J. Robertson, W.I. Milne, Is stress necessary to stabilise sp3 bonding in diamond-like carbon? Diam. Relat. Mater. 11(3–6), 994–999 (2002)CrossRefGoogle Scholar
  173. 173.
    C.M. Mate, Tribology on the Small Scale—A Bottom Up Approach to Friction, Lubrication, and Wear (Oxford University Press, Oxford, 2007)CrossRefGoogle Scholar
  174. 174.
    M.H. Kryder, E.C. Gage, T.W. McDaniel, W.A. Challener, R.E. Rottmayer, J. Ganping et al., Heat assisted magnetic recording. Proc. IEEE 96(11), 1810–1835 (2008)CrossRefGoogle Scholar
  175. 175.
    J. Hilbert, F. Mangolini, J.B. McClimon, J.R. Lukes, R.W. Carpick, Si doping enhances the thermal stability of diamond-like carbon through reductions in carbon-carbon bond length disorder. Carbon 131, 72–78 (2018)CrossRefGoogle Scholar
  176. 176.
    C. Venkatraman, D. Kester, A. Goel, D. Bray, in Diamond-Like Nanocomposite Coatings—A New Class of Materials, ed. by T.S. Sudarshan, W. Reitz, J.J. Stiglich. Surface Modification Technologies IX (The Minerals, Metals & Materials Society, 1996)Google Scholar
  177. 177.
    T.W. Scharf, J.A. Ohlhausen, D.R. Tallant, S.V. Prasad, Mechanisms of friction in diamondlike nanocomposite coatings. J. Appl. Phys. 101(6), 063521–063511 (2007)CrossRefGoogle Scholar
  178. 178.
    W.J. Yang, Y.-H. Choa, T. Sekino, K.B. Shim, K. Niihara, K.H. Auh, Thermal stability evaluation of diamond-like nanocomposite coatings. Thin Solid Films 434(1–2), 49–54 (2003)CrossRefGoogle Scholar
  179. 179.
    C. Jongwannasiri, X. Li, S. Watanabe, Improvement of thermal stability and tribological performance of diamond-like carbon composite thin films. Mater. Sci. Appl. 4, 630–636 (2013)Google Scholar
  180. 180.
    V.F. Dorfman, Diamond-like nanocomposites (DLN). Thin Solid Films 212(1–2), 267–273 (1992)CrossRefGoogle Scholar
  181. 181.
    D. Neerinck, P. Persoone, M. Sercu, A. Goel, D. Kester, D. Bray, Diamond-like nanocomposite coatings (a-C:H/a-Si:O) for tribological applications. Diam. Relat. Mater. 7(2–5), 468–471 (1998)CrossRefGoogle Scholar
  182. 182.
    F. Demichelis, C.F. Pirri, A. Tagliaferro, Influence of silicon on the physical properties of diamond-like films. Mater. Sci. Eng. B 11(1–4), 313–316 (1992)CrossRefGoogle Scholar
  183. 183.
    R. Hatada, S. Flege, K. Baba, W. Ensinger, H.J. Kleebe, I. Sethmann et al., Temperature dependent properties of silicon containing diamondlike carbon films prepared by plasma source ion implantation. J. Appl. Phys. 107(8), 083307–083306 (2010)CrossRefGoogle Scholar
  184. 184.
    G.J. Wan, P. Yang, R.K.Y. Fu, Y.F. Mei, T. Qiu, S.C.H. Kwok et al., Characteristics and surface energy of silicon-doped diamond-like carbon films fabricated by plasma immersion ion implantation and deposition. Diam. Relat. Mater. 15(9), 1276–1281 (2006)CrossRefGoogle Scholar
  185. 185.
    W.-J. Wu, M.-H. Hon, Thermal stability of diamond-like carbon films with added silicon. Surf. Coat. Technol. 111(2–3), 134–140 (1999)CrossRefGoogle Scholar
  186. 186.
    C. Donnet, A. Erdemir (eds.), Tribology of Diamond-Like Carbon Films (Springer, New York, 2008)Google Scholar
  187. 187.
    A. Erdemir, C. Donnet, Tribology of Diamond, Diamond-Like Carbon, and Related Films, in Modern Tribology Handbook, ed. by B. Bhushan (CRC Press, Boca Raton, 2001)Google Scholar
  188. 188.
    J. Andersson, R.A. Erck, A. Erdemir, Frictional behavior of diamondlike carbon films in vacuum and under varying water vapor pressure. Surf. Coat. Technol. 163–164, 535–540 (2003)CrossRefGoogle Scholar
  189. 189.
    Y. Tzeng, Very low friction for diamond sliding on diamond in water. Appl. Phys. Lett. 63(26), 3586–3588 (1993)CrossRefGoogle Scholar
  190. 190.
    M.N. Gardos, Surface chemistry-controlled tribological behavior of silicon and diamond. Tribol. Lett. 2(2), 173–187 (1996)CrossRefGoogle Scholar
  191. 191.
    M.N. Gardos, Tribological fundamentals of polycrystalline diamond films. Surf. Coat. Technol. 113(3), 183–200 (1999)CrossRefGoogle Scholar
  192. 192.
    J.A. Harrison, D.W. Brenner, Simulated tribochemistry: an atomic-scale view of the wear of diamond. J. Am. Chem. Soc. 116(23), 10399–10402 (1994)CrossRefGoogle Scholar
  193. 193.
    J.A. Harrison, C.T. White, R.J. Colton, D.W. Brenner, Investigation of the atomic-scale friction and energy dissipation in diamond using molecular dynamics. Thin Solid Films 260(2), 205–211 (1995)CrossRefGoogle Scholar
  194. 194.
    M.D. Perry, J.A. Harrison, Universal aspects of the atomic-scale friction of diamond surfaces. J. Phys. Chem. 99(24), 9960–9965 (1995)CrossRefGoogle Scholar
  195. 195.
    G. Zilibotti, M.C. Righi, M. Ferrario, Ab initio study on the surface chemistry and nanotribological properties of passivated diamond surfaces. Phys. Rev. B 79(7), 075420 (2009)CrossRefGoogle Scholar
  196. 196.
    O. Manelli, S. Corni, M.C. Righi, Water adsorption on native and hydrogenated diamond (001) surfaces. J. Phys. Chem. C 114(15), 7045–7053 (2010)CrossRefGoogle Scholar
  197. 197.
    Y. Qi, E. Konca, A.T. Alpas, Atmospheric effects on the adhesion and friction between non-hydrogenated diamond-like carbon (DLC) coating and aluminum—a first principles investigation. Surf. Sci. 600(15), 2955–2965 (2006)CrossRefGoogle Scholar
  198. 198.
    R.J.A. van den Oetelaar, C.F.J. Flipse, Atomic-scale friction on diamond (111) studied by ultra-high vacuum atomic force microscopy. Surf. Sci. 384(1–3), L828–L835 (1997)CrossRefGoogle Scholar
  199. 199.
    M.N. Gardos, B.L. Soriano, The effect of environment on the tribological properties of polycrystalline diamond films. J. Mater. Res. 5, 2599–2609 (1990)CrossRefGoogle Scholar
  200. 200.
    A. Erdemir, G.R. Fenske, A.R. Krauss, D.M. Gruen, T. McCauley, R.T. Csencsits, Tribological properties of nanocrystalline diamond films. Surf. Coat. Technol. 120–121, 565–572 (1999)CrossRefGoogle Scholar
  201. 201.
    S.E. Grillo, J.E. Field, The friction of CVD diamond at high Hertzian stresses: the effect of load, environment and sliding velocity. J. Phys. D Appl. Phys. 33(6), 595 (2000)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Department of Mechanical Engineering, Materials Science and Engineering ProgramThe University of Texas at AustinAustinUSA
  2. 2.Department of Materials Science and EngineeringUniversity of PennsylvaniaPhiladelphiaUSA

Personalised recommendations