Challenges in Bound Water Measurement

  • Mohammad U. H. Joardder
  • Monjur Mourshed
  • Mahadi Hasan Masud


Water measurement let alone bound water in food materials is a challenging task due to its diverse composition and structural matrix. Complex interactions between water and other components of food materials hinders the tracing of bound water. Moreover, all of the bound water measurement techniques follows certain set of assumptions. These assumptions result in inaccuracy to some extent. In this chapter, common challenges in overall water content measurement. Following this, specific challenges associated with individual techniques of bound water measurement has been discussed in details.


Water Boundary Water Measurement Techniques Food Materials Moisture contentMoisture Content Bioelectrical Impedance Analysis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    B. Makower, Determination of Water in Some Dehydrated Foods (ACS Publications, Washington, DC, 1950)CrossRefGoogle Scholar
  2. 2.
    S. Yazgan, A. Bernreuther, F. Ulberth, H.-D. Isengard, Water–an important parameter for the preparation and proper use of certified reference materials. Food Chem. 96(3), 411–417 (2006)CrossRefGoogle Scholar
  3. 3.
    R.J. De Knegt, H. Van den Brink, Improvement of the drying oven method for the determination of the moisture content of milk powder. Int. Dairy J. 8(8), 733–738 (1998)CrossRefGoogle Scholar
  4. 4.
    C. Reh, S.N. Bhat, S. Berrut, Determination of water content in powdered milk. Food Chem. 86(3), 457–464 (2004)CrossRefGoogle Scholar
  5. 5.
    D. Reid, Water determination in food, in Encyclopedia of Analytical Chemistry (2006)Google Scholar
  6. 6.
    G. Favetto, J. Chirife, G. Bartholomai, Determination of moisture content in glycerol-containing intermediate moisture foods. J. Food Sci. 44(4), 1258–1259 (1979)CrossRefGoogle Scholar
  7. 7.
    C. Sánchez-Moreno, J.A. Larrauri, F. Saura-Calixto, A procedure to measure the antiradical efficiency of polyphenols. J. Sci. Food Agric. 76(2), 270–276 (1998)CrossRefGoogle Scholar
  8. 8.
    H.D. Isengard, Rapid water determination in foodstuffs. Trends Food Sci. Technol. 6(5), 155–162 (1995)CrossRefGoogle Scholar
  9. 9.
    C.A. De Caro, A. Aichert, C.M. Walter, Efficient, precise and fast water determination by the Karl Fischer titration. Food Control 12(7), 431–436 (2001)CrossRefGoogle Scholar
  10. 10.
    H.-D. Isengard, P. Heinze, Determination of total water and surface water in sugars. Food Chem. 82(1), 169–172 (2003)CrossRefGoogle Scholar
  11. 11.
    S. Nomura, A. Hiltner, J.B. Lando, E. Baer, Interaction of water with native collagen. Biopolymers 16(2), 231–246 (1977)PubMedCrossRefGoogle Scholar
  12. 12.
    J.M. Preston, G.P. Tawde, 10—Freezing point depression in assemblages of moist fibres. J. Text. Inst. Trans. 47(3), T154–T165 (1956)CrossRefGoogle Scholar
  13. 13.
    E.L. Andronikashvili, G.M. Mrevlishvili, V.M. Sokhadze, K.A. Kvavadze, Thermal properties of collagen in helical and random coiled states in the temperature range from 4° to 300° K. Biopolymers 15(10), 1991–2004 (1976)CrossRefGoogle Scholar
  14. 14.
    M.F. Froix, R. Nelson, The interaction of water with cellulose from nuclear magnetic resonance relaxation times. Macromolecules 8(6), 726–730 (1975)CrossRefGoogle Scholar
  15. 15.
    I.H. Khan, M.A. Karim, Cellular water distribution, transport, and its investigation methods for plant-based food material. Food Res. Int. 99(Pt 1), 1–14 (2017)PubMedCrossRefGoogle Scholar
  16. 16.
    M.U.H. Joardder, R.J. Brown, C. Kumar, M.A. Karim, Effect of cell wall properties on porosity and shrinkage of dried apple. Int. J. Food Prop. 18(10), 2327–2337 (2015)CrossRefGoogle Scholar
  17. 17.
    C.C. Wu, C. Huang, D.J. Lee, Bound water content and water binding strength on sludge flocs. Water Res. 32(3), 900–904 (1998)CrossRefGoogle Scholar
  18. 18.
    D.J. Lee, Interpretation of bound water data measured via dilatometric technique. Water Res. 30(9), 2230–2232 (1996)CrossRefGoogle Scholar
  19. 19.
    T. Hatakeyama, K. Nakamura, H. Hatakeyama, Determination of bound water content in polymers by DTA, DSC and TG. Thermochim. Acta 123, 153–161 (1988)CrossRefGoogle Scholar
  20. 20.
    J.D. Sayre, Methods of determining bound water in plant tissue. J. Agric. Res. 44, 669–688 (1932)Google Scholar
  21. 21.
    M.I.H. Khan, R.M. Wellard, S.A. Nagy, M.U.H. Joardder, M.A. Karim, Investigation of bound and free water in plant-based food material using NMR T2 relaxometry. Innov. Food Sci. Emerg. Technol. 38, 252–261 (2016)CrossRefGoogle Scholar
  22. 22.
    M.M. Rahman, M.U.H. Joardder, A. Karim, Non-destructive investigation of cellular level moisture distribution and morphological changes during drying of a plant-based food material. Biosyst. Eng. 169, 126–138 (2018)CrossRefGoogle Scholar
  23. 23.
    J. Biscarat, C. Charmette, J. Sanchez, C. Pochat-Bohatier, Preparation of dense gelatin membranes by combining temperature induced gelation and dry-casting. J. Membr. Sci. 473, 45–53 (2015)CrossRefGoogle Scholar
  24. 24.
    H. Feng, J. Tang, S. John Dixon-Warren, Determination of moisture diffusivity of red delicious apple tissues by thermogravimetric analysis. Dry. Technol. 18(6), 1183–1199 (2000)CrossRefGoogle Scholar
  25. 25.
    V.M. da Silva, L.A. Silva, J.B. de Andrade, M.C. Veloso, G.V. Santos, Determination of moisture content and water activity in algae and fish by thermoanalytical techniques. Quim. Nova 31(4), 901–905 (2008)CrossRefGoogle Scholar
  26. 26.
    H.H. Webber, P.A. Dehnel, Water balance of whole animal, muscle tissue, and muscle cells in the prosobranch gastropod, Acmaea scutum. J. Exp. Zool. A Ecol. Genet. Physiol. 168(3), 327–335 (1968)Google Scholar
  27. 27.
    D.A. Dean, T. Ramanathan, D. Machado, R. Sundararajan, Electrical impedance spectroscopy study of biological tissues. J. Electrost. 66(3–4), 165–177 (2008)CrossRefGoogle Scholar
  28. 28.
    P. Dejmek, O. Miyawaki, Relationship between the electrical and rheological properties of potato tuber tissue after various forms of processing. Biosci. Biotechnol. Biochem. 66(6), 1218–1223 (2002)PubMedCrossRefGoogle Scholar
  29. 29.
    M.A. Cox, M.I.N. Zhang, J.H.M. Willison, Apple bruise assessment through electrical impedance measurements. J. Hortic. Sci. 68(3), 393–398 (1993)CrossRefGoogle Scholar
  30. 30.
    M. Dehghan, A.T. Merchant, Is bioelectrical impedance accurate for use in large epidemiological studies? Nutr. J. 7(1), 26 (2008)PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    P. Deurenberg, Limitations of the bioelectrical impedance method for the assessment of body fat in severe obesity. Am. J. Clin. Nutr. 64(3), 449S–452S (1996)PubMedCrossRefGoogle Scholar
  32. 32.
    R. Toledo, M.P. Steinberg, A.I. Nelson, Quantitative determination of bound water by NMR. J. Food Sci. 33(3), 315–317 (1968)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Mohammad U. H. Joardder
    • 1
  • Monjur Mourshed
    • 1
  • Mahadi Hasan Masud
    • 1
  1. 1.Department of Mechanical EngineeringRajshahi University of EngineeringRajshahiBangladesh

Personalised recommendations