Advertisement

Brain Imaging of Pain

  • Massimo CauloEmail author
  • Valerio Maruotti
  • Antonio Ferretti
Chapter

Abstract

The brain is the principal processor of internal and external sensory experiences including pain. Pain is a multidimensional experience influenced by complex interactions among multiple processes including nociception (the afferent neural activity transmitting sensory information about noxious stimuli), cognitive appraisals (expectation, attention), and emotional aspects (affect).

Noninvasive structural and especially functional imaging techniques (PET, MEG, MRI and fMRI, ASL, NIRS) provide insight into the pathophysiology of pain in healthy and in pathologies. The poor relationship between tissue damage on structural MRI and pain has shifted the concept of pain from a localized to a more complex phenomenon based on interactions of multiple brain regions. Anatomical and physiological studies in animals, as well as functional imaging studies in humans, have shown that multiple cortical and subcortical areas are activated by painful stimuli, the pain matrix. This is not a fixed arrangement of structures but rather a fluid system composed of several interacting networks subserving in peripheral nociception, central processing, cortical modulation, and cognitive-emotional and psychological qualities.

Keywords

Pain Magnetic resonance imaging Functional magnetic resonance imaging Pain matrix Functional connectivity 

Supplementary material

Video 2.1a

Wallenberg syndrome: axial FLAIR MR sequence shows a hyperintense ischemic lesion in the left posterolateral medulla oblongata. (MOV 2319 kb)

Video 2.1b

Wallenberg syndrome:axial T2 MR sequence shows a hyperintense ischemic lesion in the left posterolateral medulla oblongata. (MOV 2354 kb)

Video 2.2a

Thalamic stroke: axial FLAIR MR sequence shows a hyperintense ischemic lesion in the left lateral thalamus. (MOV 1873 kb)

Video 2.2b

Thalamic stroke: axial T2 MR sequence shows a hyperintense ischemic lesion in the left lateral thalamus. (MOV 2277 kb)

Video 2.3a

Cervical spinal cord lesion in a patient with multiple sclerosis: sagittal T2 MR sequence shows a hyperintense demyelinating lesion at C5–6. (MOV 1096 kb)

Video 2.3b

Cervical spinal cord lesion in a patient with multiple sclerosis: axial T2 MR sequence shows a hyperintense demyelinating lesion in the posterior columns. (MOV 1200 kb)

References

  1. 1.
  2. 2.
    Ogawa S, Tank DW, Menon R, Ellermann JM, Kim SG, Merkle H, et al. Intrinsic signal changes accompanying sensory stimulation: functional brain mapping with magnetic resonance imaging. Proc Natl Acad Sci U S A. 1992;89(13):5951–5. [cited 2018 Feb 26]. http://www.ncbi.nlm.nih.gov/pubmed/1631079.PubMedPubMedCentralGoogle Scholar
  3. 3.
    Buxton RB, Uludağ K, Dubowitz DJ, Liu TT. Modeling the hemodynamic response to brain activation. NeuroImage. 2004;23:S220–33. [cited 2018 Feb 26]. http://www.ncbi.nlm.nih.gov/pubmed/15501093.PubMedGoogle Scholar
  4. 4.
    Fox MD, Raichle ME. Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging. Nat Rev Neurosci. 2007;8(9):700–11. [cited 2018 Apr 9]. http://www.nature.com/articles/nrn2201.PubMedGoogle Scholar
  5. 5.
    Peyron R, Laurent B, García-Larrea L. Functional imaging of brain responses to pain. A review and meta-analysis. Neurophysiol Clin. 2000;30(5):263–88. [cited 2018 Feb 26]. http://www.ncbi.nlm.nih.gov/pubmed/11126640.PubMedGoogle Scholar
  6. 6.
    Detre JA, Leigh JS, Williams DS, Koretsky AP. Perfusion imaging. Magn Reson Med. 1992;23(1):37–45. [cited 2018 Apr 8]. http://www.ncbi.nlm.nih.gov/pubmed/1734182.PubMedGoogle Scholar
  7. 7.
    Alsop DC, Detre JA, Golay X, Günther M, Hendrikse J, Hernandez-Garcia L, et al. Recommended implementation of arterial spin-labeled perfusion MRI for clinical applications: a consensus of the ISMRM perfusion study group and the European consortium for ASL in dementia. Magn Reson Med. 2015;73(1):102–16. [cited 2018 Apr 8]. http://www.ncbi.nlm.nih.gov/pubmed/24715426.PubMedGoogle Scholar
  8. 8.
    Diekhoff S, Uludağ K, Sparing R, Tittgemeyer M, Cavuşoğlu M, von Cramon DY, et al. Functional localization in the human brain: gradient-echo, spin-echo, and arterial spin-labeling fMRI compared with neuronavigated TMS. Hum Brain Mapp. 2011;32(3):341–57. [cited 2018 Apr 8].  https://doi.org/10.1002/hbm.21024.PubMedGoogle Scholar
  9. 9.
    Tjandra T, Brooks JCW, Figueiredo P, Wise R, Matthews PM, Tracey I. Quantitative assessment of the reproducibility of functional activation measured with BOLD and MR perfusion imaging: implications for clinical trial design. NeuroImage. 2005;27(2):393–401. [cited 2018 Apr 8]. http://www.ncbi.nlm.nih.gov/pubmed/15921936.PubMedGoogle Scholar
  10. 10.
    Raoult H, Ferr J, Petr J, Bannier E, Stamm A, Barillot C, et al. Functional arterial spin labeling: optimal sequence duration for motor activation mapping in clinical practice. J Magn Reson Imaging. 2012;36(6):1435–44. [cited 2018 Apr 8].  https://doi.org/10.1002/jmri.23782.PubMedGoogle Scholar
  11. 11.
    Youssef AM, Ludwick A, Wilcox SL, Lebel A, Peng K, Colon E, et al. In child and adult migraineurs the somatosensory cortex stands out … again: an arterial spin labeling investigation. Hum Brain Mapp. 2017;38(8):4078–87. [cited 2018 Feb 26]. http://www.ncbi.nlm.nih.gov/pubmed/28560777.PubMedPubMedCentralGoogle Scholar
  12. 12.
    Wasan AD, Loggia ML, Chen LQ, Napadow V, Kong J, Gollub RL. Neural correlates of chronic low back pain measured by arterial spin labeling. Anesthesiology. 2011;115(2):364–74. [cited 2018 Feb 26]. http://www.ncbi.nlm.nih.gov/pubmed/21720241.PubMedPubMedCentralGoogle Scholar
  13. 13.
    Jones AKP, Brown WD, Friston KJ, Qi LY, Frackowiak RSJ. Cortical and subcortical localization of response to pain in man using positron emission tomography. Proc R Soc B Biol Sci. 1991;244(1309):39–44. [cited 2018 Feb 26]. http://www.ncbi.nlm.nih.gov/pubmed/1677194.Google Scholar
  14. 14.
    Babiloni C, Pizzella V, Del Gratta C, Ferretti A, Romani GL. Chapter 5 fundamentals of electroencefalography, magnetoencefalography, and functional magnetic resonance imaging. Int Rev Neurobiol. 2009;86:67–80. [cited 2018 Feb 26]. http://www.ncbi.nlm.nih.gov/pubmed/19607991.PubMedGoogle Scholar
  15. 15.
    Ploner M, Gross J, Timmermann L, Schnitzler A. Cortical representation of first and second pain sensation in humans. Proc Natl Acad Sci U S A. 2002;99(19):12444–8. [cited 2018 Feb 26]. http://www.ncbi.nlm.nih.gov/pubmed/12209003.PubMedPubMedCentralGoogle Scholar
  16. 16.
    Torquati K, Pizzella V, Babiloni C, Del Gratta C, Della Penna S, Ferretti A, et al. Nociceptive and non-nociceptive sub-regions in the human secondary somatosensory cortex: an MEG study using fMRI constraints. NeuroImage. 2005;26(1):48–56. [cited 2018 Feb 28]. https://www.sciencedirect.com/science/article/pii/S1053811905000352.PubMedGoogle Scholar
  17. 17.
    Brown CA, Seymour B, Boyle Y, El-Deredy W, Jones AKP. Modulation of pain ratings by expectation and uncertainty: behavioral characteristics and anticipatory neural correlates. Pain. 2008;135(3):240–50. [cited 2018 Feb 26]. http://www.ncbi.nlm.nih.gov/pubmed/17614199.PubMedGoogle Scholar
  18. 18.
    Hillman EMC. Optical brain imaging in vivo: techniques and applications from animal to man. J Biomed Opt. 2007;12(5):51402. [cited 2018 Feb 26]. http://www.ncbi.nlm.nih.gov/pubmed/17994863.Google Scholar
  19. 19.
    Boas DA, Elwell CE, Ferrari M, Taga G. Twenty years of functional near-infrared spectroscopy: introduction for the special issue. NeuroImage. 2014;85:1–5. [cited 2018 Feb 26]. http://www.ncbi.nlm.nih.gov/pubmed/24321364.PubMedGoogle Scholar
  20. 20.
    Wilkins RH, Brody IA. The thalamic syndrome. Arch Neurol. 1969;20(5):559–62. [cited 2018 Feb 26]. http://www.ncbi.nlm.nih.gov/pubmed/5767614.PubMedGoogle Scholar
  21. 21.
    Weimar C, Kloke M, Schlott M, Katsarava Z, Diener H-C. Central poststroke pain in a consecutive cohort of stroke patients. Cerebrovasc Dis. 2002;14(3-4):261–3. [cited 2018 Feb 27]. http://www.ncbi.nlm.nih.gov/pubmed/12403962.PubMedGoogle Scholar
  22. 22.
    Andersen G, Vestergaard K, Ingeman-Nielsen M, Jensen TS. Incidence of central post-stroke pain. Pain. 1995;61(2):187–93. [cited 2018 Feb 27]. http://www.ncbi.nlm.nih.gov/pubmed/7659428.PubMedGoogle Scholar
  23. 23.
    Bowsher D. Central pain: clinical and physiological characteristics. J Neurol Neurosurg Psychiatry. 1996;61(1):62–9. [cited 2018 Feb 27]. http://www.ncbi.nlm.nih.gov/pubmed/8676164.PubMedPubMedCentralGoogle Scholar
  24. 24.
    Vestergaard K, Nielsen J, Andersen G, Ingeman-Nielsen M, Arendt-Nielsen L, Jensen TS. Sensory abnormalities in consecutive, unselected patients with central post-stroke pain. Pain. 1995;61(2):177–86. [cited 2018 Feb 27]. http://www.ncbi.nlm.nih.gov/pubmed/7659427.PubMedGoogle Scholar
  25. 25.
    Leijon G, Boivie J, Johansson I. Central post-stroke pain—neurological symptoms and pain characteristics. Pain. 1989;36(1):13–25. [cited 2018 Feb 27]. http://www.ncbi.nlm.nih.gov/pubmed/2919091.PubMedGoogle Scholar
  26. 26.
    Bowsher D, Leijon G, Thuomas KA. Central poststroke pain: correlation of MRI with clinical pain characteristics and sensory abnormalities. Neurology. 1998;51(5):1352–8. [cited 2018 Feb 27]. http://www.ncbi.nlm.nih.gov/pubmed/9818859.PubMedGoogle Scholar
  27. 27.
    Kim JS. Pure sensory stroke. Clinical-radiological correlates of 21 cases. Stroke. 1992;23(7):983–7. [cited 2018 Feb 27]. http://www.ncbi.nlm.nih.gov/pubmed/1615549.PubMedGoogle Scholar
  28. 28.
    Parizel PM, Makkat S, Jorens PG, Özsarlak Ö, Cras P, Van Goethem JW, et al. Brainstem hemorrhage in descending transtentorial herniation (Duret hemorrhage). Intensive Care Med. 2002;28(1):85–8. [cited 2018 Feb 27]. http://www.ncbi.nlm.nih.gov/pubmed/11819006.PubMedGoogle Scholar
  29. 29.
    Murphy KL, Bethea JR, Fischer R. Neuropathic pain in multiple sclerosis—current therapeutic intervention and future treatment perspectives. In:Multiple sclerosis: perspectives in treatment and pathogenesis. Brisbane: Codon Publications; 2017. [cited 2018 Mar 9]. http://www.ncbi.nlm.nih.gov/pubmed/29261265.Google Scholar
  30. 30.
    Seixas D, Foley P, Palace J, Lima D, Ramos I, Tracey I. Pain in multiple sclerosis: a systematic review of neuroimaging studies. Neuroimage Clin. 2014;5:322–31. [cited 2018 Mar 8]. http://creativecommons.org/licenses/by-nc-nd/3.0/.PubMedPubMedCentralGoogle Scholar
  31. 31.
    Mazhari A. Multiple sclerosis-related pain syndromes: an imaging update. Curr Pain Headache Rep. 2016;20(12):63. [cited 2018 Mar 9]. http://www.ncbi.nlm.nih.gov/pubmed/27864731.PubMedGoogle Scholar
  32. 32.
    Treede RD, Kenshalo DR, Gracely RH, Jones AK. The cortical representation of pain. Pain. 1999;79(2-3):105–11. [cited 2018 Feb 26]. http://www.ncbi.nlm.nih.gov/pubmed/10068155.PubMedGoogle Scholar
  33. 33.
    Melzack R. From the gate to the neuromatrix. Pain. 1999;82(Suppl 6):S121–6. [cited 2018 Feb 26]. http://www.ncbi.nlm.nih.gov/pubmed/10491980.Google Scholar
  34. 34.
    Kulkarni B, Bentley DE, Elliott R, Youell P, Watson A, Derbyshire SWG, et al. Attention to pain localization and unpleasantness discriminates the functions of the medial and lateral pain systems. Eur J Neurosci. 2005;21(11):3133–42. [cited 2018 Feb 28].  https://doi.org/10.1111/j.1460-9568.2005.04098.x.PubMedGoogle Scholar
  35. 35.
    Wiech K, Seymour B, Kalisch R, Enno Stephan K, Koltzenburg M, Driver J, et al. Modulation of pain processing in hyperalgesia by cognitive demand. NeuroImage. 2005;27(1):59–69. [cited 2018 Feb 28]. http://www.ncbi.nlm.nih.gov/pubmed/15978845.PubMedGoogle Scholar
  36. 36.
    Omori S, Isose S, Otsuru N, Nishihara M, Kuwabara S, Inui K, et al. Somatotopic representation of pain in the primary somatosensory cortex (S1) in humans. Clin Neurophysiol. 2013;124(7):1422–30. [cited 2018 Feb 28]. http://www.ncbi.nlm.nih.gov/pubmed/23415452.PubMedGoogle Scholar
  37. 37.
    Ferretti A, Babiloni C, Del Gratta C, Caulo M, Tartaro A, Bonomo L, et al. Functional topography of the secondary somatosensory cortex for nonpainful and painful stimuli: an fMRI study. NeuroImage. 2003;20(3):1625–38. [cited 2018 Mar 13]. https://www.sciencedirect.com/science/article/pii/S1053811903004385.PubMedGoogle Scholar
  38. 38.
    Ferretti A, Del Gratta C, Babiloni C, Caulo M, Arienzo D, Tartaro A, et al. Functional topography of the secondary somatosensory cortex for nonpainful and painful stimulation of median and tibial nerve: an fMRI study. NeuroImage. 2004;23(3):1217–25. [cited 2018 Feb 28]. http://www.ncbi.nlm.nih.gov/pubmed/15528121.PubMedGoogle Scholar
  39. 39.
    Chen TL, Babiloni C, Ferretti A, Perrucci MG, Romani GL, Rossini PM, et al. Human secondary somatosensory cortex is involved in the processing of somatosensory rare stimuli: an fMRI study. NeuroImage. 2008;40(4):1765–71. [cited 2018 Feb 27]. http://www.ncbi.nlm.nih.gov/pubmed/18329293.PubMedGoogle Scholar
  40. 40.
    Ploner M, Schmitz F, Freund H-J, Schnitzler A. Parallel activation of primary and secondary somatosensory cortices in human pain processing. J Neurophysiol. 1999;81(6):3100–4. [cited 2018 Feb 28].  https://doi.org/10.1152/jn.1999.81.6.3100.PubMedGoogle Scholar
  41. 41.
    Apkarian AV, Bushnell MC, Treede R-D, Zubieta J-K. Human brain mechanisms of pain perception and regulation in health and disease. Eur J Pain. 2005;9(4):463. [cited 2018 Feb 27]. http://www.ncbi.nlm.nih.gov/pubmed/15979027.PubMedGoogle Scholar
  42. 42.
    Vogt BA, Berger GR, Derbyshire SWG. Structural and functional dichotomy of human midcingulate cortex. Eur J Neurosci. 2003;18(11):3134–44. [cited 2018 Feb 28]. http://www.ncbi.nlm.nih.gov/pubmed/14656310.PubMedPubMedCentralGoogle Scholar
  43. 43.
    Segerdahl AR, Mezue M, Okell TW, Farrar JT, Tracey I. The dorsal posterior insula subserves a fundamental role in human pain. Nat Neurosci. 2015;18(4):499–500. [cited 2018 Feb 28]. http://www.nature.com/articles/nn.3969.PubMedGoogle Scholar
  44. 44.
    Mazzola L, Isnard J, Peyron R, Mauguière F. Stimulation of the human cortex and the experience of pain: Wilder Penfield’s observations revisited. Brain. 2012;135(2):631–40. [cited 2018 Mar 11]. http://www.ncbi.nlm.nih.gov/pubmed/22036962.PubMedGoogle Scholar
  45. 45.
    Garcia-Larrea L, Perchet C, Creac’h C, Convers P, Peyron R, Laurent B, et al. Operculo-insular pain (parasylvian pain): a distinct central pain syndrome. Brain. 2010;133(9):2528–39. [cited 2018 Mar 11].  https://doi.org/10.1093/brain/awq220.PubMedGoogle Scholar
  46. 46.
    Morton D, Jones A, Sandhu J. Brain imaging of pain: state of the art. J Pain Res. 2016;9:613–24. [cited 2018 Feb 26]. http://www.ncbi.nlm.nih.gov/pubmed/27660488.PubMedPubMedCentralGoogle Scholar
  47. 47.
    Porro CA, Baraldi P, Pagnoni G, Serafini M, Facchin P, Maieron M, et al. Does anticipation of pain affect cortical nociceptive systems? J Neurosci. 2002;22(8):3206–14. [cited 2018 Feb 28]. http://www.ncbi.nlm.nih.gov/pubmed/11943821.PubMedGoogle Scholar
  48. 48.
    Arntz A, de Jong P. Anxiety, attention and pain. J Psychosom Res. 1993;37(4):423–31. [cited 2018 Feb 28]. http://www.ncbi.nlm.nih.gov/pubmed/8510069.PubMedGoogle Scholar
  49. 49.
    Bantick SJ, Wise RG, Ploghaus A, Clare S, Smith SM, Tracey I. Imaging how attention modulates pain in humans using functional MRI. Brain. 2002;125(Pt 2):310–9. [cited 2018 Feb 28]. http://www.ncbi.nlm.nih.gov/pubmed/11844731.PubMedPubMedCentralGoogle Scholar
  50. 50.
    Bingel U, Schoell E, Herken W, Büchel C, May A. Habituation to painful stimulation involves the antinociceptive system. Pain. 2007;131(1):21–30. [cited 2018 Feb 28]. http://www.ncbi.nlm.nih.gov/pubmed/17258858.PubMedGoogle Scholar
  51. 51.
    Iannetti GD, Mouraux A. From the neuromatrix to the pain matrix (and back). Exp Brain Res. 2010;205(1):1–12. [cited 2018 Feb 26].  https://doi.org/10.1007/s00221-010-2340-1.PubMedGoogle Scholar
  52. 52.
    Kong J, Loggia ML, Zyloney C, Tu P, LaViolette P, Gollub RL. Exploring the brain in pain: activations, deactivations and their relation. Pain. 2010;148(2):257–67. [cited 2018 Feb 28]. http://www.ncbi.nlm.nih.gov/pubmed/20005043.PubMedGoogle Scholar
  53. 53.
    Wilcox CE, Mayer AR, Teshiba TM, Ling J, Smith BW, Wilcox GL, et al. The subjective experience of pain: an FMRI study of percept-related models and functional connectivity. Pain Med. 2015;16(11):2121–33. [cited 2018 Apr 10]. http://www.ncbi.nlm.nih.gov/pubmed/25989475.PubMedPubMedCentralGoogle Scholar
  54. 54.
    Perrotta A, Chiacchiaretta P, Anastasio MG, Pavone L, Grillea G, Bartolo M, et al. Temporal summation of the nociceptive withdrawal reflex involves deactivation of posterior cingulate cortex. Eur J Pain. 2017;21(2):289–301. [cited 2018 Apr 8]. http://www.ncbi.nlm.nih.gov/pubmed/27452295.PubMedGoogle Scholar
  55. 55.
    Mantini D, Caulo M, Ferretti A, Romani GL, Tartaro A. Noxious somatosensory stimulation affects the default mode of brain function: evidence from functional MR imaging. Radiology. 2009;253(3):797–804. [cited 2018 Feb 28]. http://www.ncbi.nlm.nih.gov/pubmed/19789220.PubMedGoogle Scholar
  56. 56.
    Benoit B, Martin-Misener R, Newman A, Latimer M, Campbell-Yeo M. Neurophysiological assessment of acute pain in infants: a scoping review of research methods. Acta Paediatr. 2017;106(7):1053–66. [cited 2018 Mar 11]. http://www.ncbi.nlm.nih.gov/pubmed/28326623.PubMedGoogle Scholar
  57. 57.
    Tagliazucchi E, Balenzuela P, Fraiman D, Chialvo DR. Brain resting state is disrupted in chronic back pain patients. Neurosci Lett. 2010;485(1):26–31. [cited 2018 Feb 28]. http://www.ncbi.nlm.nih.gov/pubmed/20800649.PubMedPubMedCentralGoogle Scholar
  58. 58.
    Baliki MN, Mansour AR, Baria AT, Apkarian AV. Functional reorganization of the default mode network across chronic pain conditions. PLoS One. 2014;9(9):e106133. [cited 2018 Feb 28].  https://doi.org/10.1371/journal.pone.0106133.PubMedPubMedCentralGoogle Scholar
  59. 59.
    Jutzeler CR, Curt A, Kramer JLK. Relationship between chronic pain and brain reorganization after deafferentation: a systematic review of functional MRI findings. Neuroimage Clin. 2015;9:599–606. [cited 2018 Mar 10]. http://www.ncbi.nlm.nih.gov/pubmed/26740913.PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Massimo Caulo
    • 1
    • 2
    Email author
  • Valerio Maruotti
    • 2
    • 3
  • Antonio Ferretti
    • 1
    • 2
  1. 1.Department of Neuroscience, Imaging and Clinical SciencesUniversity “G. d’Annunzio” of ChietiChietiItaly
  2. 2.ITAB - Institute of Advanced Biomedical TechnologiesUniversity “G. d’Annunzio” of ChietiChietiItaly
  3. 3.Neurology DepartmentIRCCS NeuromedPozzilliItaly

Personalised recommendations